COVID-19 Detection using Transfer Learning with Convolutional Neural
Network
- URL: http://arxiv.org/abs/2206.08557v1
- Date: Fri, 17 Jun 2022 05:30:14 GMT
- Title: COVID-19 Detection using Transfer Learning with Convolutional Neural
Network
- Authors: Pramit Dutta, Tanny Roy and Nafisa Anjum
- Abstract summary: COVID-19 is a fatal infectious disease, first recognized in December 2019 in Wuhan, Hubei, China.
In this study, a Transfer learning strategy (CNN) for detecting COVID-19 infection from CT images has been proposed.
In the proposed model, a multilayer Convolutional neural network (CNN) with Transfer learning model Inception V3 has been designed.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Novel Coronavirus disease 2019 (COVID-19) is a fatal infectious disease,
first recognized in December 2019 in Wuhan, Hubei, China, and has gone on an
epidemic situation. Under these circumstances, it became more important to
detect COVID-19 in infected people. Nowadays, the testing kits are gradually
lessening in number compared to the number of infected population. Under recent
prevailing conditions, the diagnosis of lung disease by analyzing chest CT
(Computed Tomography) images has become an important tool for both diagnosis
and prophecy of COVID-19 patients. In this study, a Transfer learning strategy
(CNN) for detecting COVID-19 infection from CT images has been proposed. In the
proposed model, a multilayer Convolutional neural network (CNN) with Transfer
learning model Inception V3 has been designed. Similar to CNN, it uses
convolution and pooling to extract features, but this transfer learning model
contains weights of dataset Imagenet. Thus it can detect features very
effectively which gives it an upper hand for achieving better accuracy.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - CoVid-19 Detection leveraging Vision Transformers and Explainable AI [0.0]
Lung disease is responsible for five of the top thirty leading causes of death.
It is critical to diagnose lung diseases in their early stages.
Deep learning algorithms have significant promise for the autonomous, rapid, and accurate identification of lung diseases.
arXiv Detail & Related papers (2023-07-29T17:45:27Z) - COVID-19 Disease Identification on Chest-CT images using CNN and VGG16 [0.0]
COVID-19 is an infectious disease caused by a virus originating in Wuhan, China, in December 2019.
In the earlier stage, medical organizations were dazzled because there were no proper health aids or medicine to detect a COVID-19.
This study presents a Convolutional Neural Network (CNN) and VGG16-based model for automated COVID-19 identification on chest CT images.
arXiv Detail & Related papers (2022-07-09T07:20:15Z) - A Deep Learning Approach for the Detection of COVID-19 from Chest X-Ray
Images using Convolutional Neural Networks [0.0]
COVID-19 (coronavirus) is an ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
The virus was first identified in mid-December 2019 in the Hubei province of Wuhan, China.
It has spread throughout the planet with more than 75.5 million confirmed cases and more than 1.67 million deaths.
arXiv Detail & Related papers (2022-01-24T21:12:25Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Generation of COVID-19 Chest CT Scan Images using Generative Adversarial
Networks [0.0]
SARS-CoV-2 is a viral contagious disease that is infected by a novel coronavirus, and has been rapidly spreading across the globe.
It is very important to test and isolate people to reduce spread, and from here comes the need to do this quickly and efficiently.
According to some studies, Chest-CT outperforms RT-PCR lab testing, which is the current standard, when diagnosing COVID-19 patients.
arXiv Detail & Related papers (2021-05-20T13:04:21Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - COVIDNet-CT: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest CT Images [75.74756992992147]
We introduce COVIDNet-CT, a deep convolutional neural network architecture that is tailored for detection of COVID-19 cases from chest CT images.
We also introduce COVIDx-CT, a benchmark CT image dataset derived from CT imaging data collected by the China National Center for Bioinformation.
arXiv Detail & Related papers (2020-09-08T15:49:55Z) - Momentum Contrastive Learning for Few-Shot COVID-19 Diagnosis from Chest
CT Images [41.73507451077361]
We propose a new deep learning algorithm for the automated diagnosis of COVID-19, which only requires a few samples for training.
We use contrastive learning to train an encoder which can capture expressive feature representations on large and publicly available lung datasets.
Our results demonstrate the superior performance of our model for the accurate diagnosis of COVID-19 based on chest CT images.
arXiv Detail & Related papers (2020-06-16T10:14:58Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.