Search engine effects on news consumption: ranking and
representativeness outweigh familiarity in news selection
- URL: http://arxiv.org/abs/2206.08578v2
- Date: Wed, 27 Jul 2022 12:16:41 GMT
- Title: Search engine effects on news consumption: ranking and
representativeness outweigh familiarity in news selection
- Authors: Roberto Ulloa, Celina Sylwia Kacperski
- Abstract summary: We analyze three competing factors, two algorithmic (ranking and representativeness) and one psychological (familiarity) that could influence the selection of news articles that appear in search results.
Our results demonstrate the steering power of the algorithmic factors on news consumption as compared to familiarity.
We confirm that Google Search drives individuals to unfamiliar sources and find that it increases the diversity of the political audience to news sources.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online platforms have transformed the way in which individuals access and
interact with news, with a high degree of trust particularly placed in search
engine results. We use web tracked behavioral data across a 2-month period and
analyze three competing factors, two algorithmic (ranking and
representativeness) and one psychological (familiarity) that could influence
the selection of news articles that appear in search results. Participants'
(n=280) news engagement is our proxy for familiarity, and we investigate news
articles presented on Google search pages (n=1221). Our results demonstrate the
steering power of the algorithmic factors on news consumption as compared to
familiarity. But despite the strong effect of ranking, we find that it plays a
lesser role for news articles compared to non-news. We confirm that Google
Search drives individuals to unfamiliar sources and find that it increases the
diversity of the political audience to news sources. With our methodology, we
take a step in tackling the challenges of testing social science theories in
digital contexts shaped by algorithms.
Related papers
- Auditing Google's Search Algorithm: Measuring News Diversity Across Brazil, the UK, and the US [0.0]
This study examines the influence of Google's search algorithm on news diversity by analyzing search results in Brazil, the UK, and the US.
It explores how Google's system preferentially favors a limited number of news outlets.
Findings indicate a slight leftward bias in search outcomes and a preference for popular, often national outlets.
arXiv Detail & Related papers (2024-10-31T11:49:16Z) - The News Comment Gap and Algorithmic Agenda Setting in Online Forums [0.0]
We analyse 1.2 million comments from Austrian newspaper Der Standard to understand the "News Comment Gap" and the effects of different ranking algorithms.
We find that journalists prefer positive, timely, complex, direct responses, while readers favour comments similar to article content from elite authors.
arXiv Detail & Related papers (2024-08-13T17:43:32Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
This paper investigates the challenges of building scalable NLP systems for discovering patterns of media selection biases directly from news content in massive-scale news corpora.
We show the capabilities of the framework through a case study on NELA-2020, a corpus of 1.8M news articles in English from 519 news sources worldwide.
arXiv Detail & Related papers (2023-04-06T23:36:45Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - Novelty in news search: a longitudinal study of the 2020 US elections [62.997667081978825]
We analyze novelty, a measurement of new items that emerge in the top news search results.
We find more new items emerging for election related queries compared to topical or stable queries.
We argue that such imbalances affect the visibility of political candidates in news searches during electoral periods.
arXiv Detail & Related papers (2022-11-09T08:42:37Z) - Who Shares Fake News? Uncovering Insights from Social Media Users' Post Histories [0.0]
We propose that social-media users' own post histories are an underused resource for studying fake-news sharing.
We identify cues that distinguish fake-news sharers, predict those most likely to share fake news, and identify promising constructs to build interventions.
arXiv Detail & Related papers (2022-03-20T14:26:20Z) - A Study of Fake News Reading and Annotating in Social Media Context [1.0499611180329804]
We present an eye-tracking study, in which we let 44 lay participants to casually read through a social media feed containing posts with news articles, some of which were fake.
In a second run, we asked the participants to decide on the truthfulness of these articles.
We also describe a follow-up qualitative study with a similar scenario but this time with 7 expert fake news annotators.
arXiv Detail & Related papers (2021-09-26T08:11:17Z) - The Matter of Chance: Auditing Web Search Results Related to the 2020
U.S. Presidential Primary Elections Across Six Search Engines [68.8204255655161]
We look at the text search results for "us elections", "donald trump", "joe biden" and "bernie sanders" queries on Google, Baidu, Bing, DuckDuckGo, Yahoo, and Yandex.
Our findings indicate substantial differences in the search results between search engines and multiple discrepancies within the results generated for different agents.
arXiv Detail & Related papers (2021-05-03T11:18:19Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
This research investigates the effects of an Explainable AI assistant embedded in news review platforms for combating the propagation of fake news.
We design a news reviewing and sharing interface, create a dataset of news stories, and train four interpretable fake news detection algorithms.
For a deeper understanding of Explainable AI systems, we discuss interactions between user engagement, mental model, trust, and performance measures in the process of explaining.
arXiv Detail & Related papers (2020-07-24T05:42:29Z) - Political audience diversity and news reliability in algorithmic ranking [54.23273310155137]
We propose using the political diversity of a website's audience as a quality signal.
Using news source reliability ratings from domain experts and web browsing data from a diverse sample of 6,890 U.S. citizens, we first show that websites with more extreme and less politically diverse audiences have lower journalistic standards.
arXiv Detail & Related papers (2020-07-16T02:13:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.