論文の概要: CookDial: A dataset for task-oriented dialogs grounded in procedural
documents
- arxiv url: http://arxiv.org/abs/2206.08723v1
- Date: Fri, 17 Jun 2022 12:23:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-20 14:02:10.284243
- Title: CookDial: A dataset for task-oriented dialogs grounded in procedural
documents
- Title(参考訳): cookdial: 手続き文書に基づくタスク指向ダイアログのためのデータセット
- Authors: Yiwei Jiang, Klim Zaporojets, Johannes Deleu, Thomas Demeester, Chris
Develder
- Abstract要約: 本研究は、手続き的知識理解を伴うタスク指向対話システムの研究を容易にする新しいダイアログデータセットであるCookDialを提案する。
コーパスは、260人の人対人タスク指向のダイアログを含み、エージェントがレシピドキュメントを与えられた場合、ユーザが料理を調理するように誘導する。
CookDialのダイアログには、 (i) ダイアログフローとサポートドキュメントの間の手続き的アライメント、 (ii) 長い文のセグメンテーション、ハードインストラクションのパラフレーズ化、およびダイアログコンテキストにおけるコア推論の解決を含む複雑なエージェント決定の2つの特徴がある。
- 参考スコア(独自算出の注目度): 21.431615439267734
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This work presents a new dialog dataset, CookDial, that facilitates research
on task-oriented dialog systems with procedural knowledge understanding. The
corpus contains 260 human-to-human task-oriented dialogs in which an agent,
given a recipe document, guides the user to cook a dish. Dialogs in CookDial
exhibit two unique features: (i) procedural alignment between the dialog flow
and supporting document; (ii) complex agent decision-making that involves
segmenting long sentences, paraphrasing hard instructions and resolving
coreference in the dialog context. In addition, we identify three challenging
(sub)tasks in the assumed task-oriented dialog system: (1) User Question
Understanding, (2) Agent Action Frame Prediction, and (3) Agent Response
Generation. For each of these tasks, we develop a neural baseline model, which
we evaluate on the CookDial dataset. We publicly release the CookDial dataset,
comprising rich annotations of both dialogs and recipe documents, to stimulate
further research on domain-specific document-grounded dialog systems.
- Abstract(参考訳): 本研究は、手続き的知識理解を伴うタスク指向対話システムの研究を容易にする新しいダイアログデータセットであるCookDialを提案する。
コーパスは、260人の人対人タスク指向のダイアログを含み、エージェントがレシピドキュメントを与えられた場合、ユーザが料理を調理するように誘導する。
CookDialのダイアログには2つの特徴がある。
(i) 対話フローと支援文書との手続き的アライメント
(II)長い文のセグメンテーション、ハードインストラクションのパラフレーズ化、会話コンテキストにおけるコア推論の解決を含む複雑なエージェント決定
また,タスク指向対話システムでは,(1)ユーザ質問理解,(2)エージェント行動フレーム予測,(3)エージェント応答生成の3つの課題(サブタスク)を識別する。
これらのタスク毎に、我々はCookDialデータセットに基づいて評価するニューラルベースラインモデルを開発する。
ダイアログとレシピドキュメントの豊富なアノテーションを含むCookDialデータセットを公開し、ドメイン固有の文書基底ダイアログシステムに関するさらなる研究を促進する。
関連論文リスト
- Multi-User MultiWOZ: Task-Oriented Dialogues among Multiple Users [51.34484827552774]
マルチユーザMulti-User MultiWOZデータセットを2つのユーザと1つのエージェント間のタスク指向対話としてリリースする。
これらの対話は、タスク指向のシナリオにおける協調的な意思決定の興味深いダイナミクスを反映している。
本稿では,複数ユーザ間のタスク指向のチャットを簡潔なタスク指向のクエリとして書き換える,マルチユーザコンテキストクエリ書き換えの新しいタスクを提案する。
論文 参考訳(メタデータ) (2023-10-31T14:12:07Z) - Leveraging Explicit Procedural Instructions for Data-Efficient Action
Prediction [5.448684866061922]
タスク指向の対話は、しばしばエージェントがユーザ要求を満たすために複雑で多段階の手順を実行する必要がある。
大規模言語モデルは、制約のある環境でこれらの対話を自動化することに成功したが、その広範な展開は、トレーニングに必要なタスク固有の大量のデータによって制限されている。
本稿では,エージェントガイドラインから導出した明示的な指示を利用して対話システムを構築するための,データ効率のよいソリューションを提案する。
論文 参考訳(メタデータ) (2023-06-06T18:42:08Z) - Doc2Bot: Accessing Heterogeneous Documents via Conversational Bots [103.54897676954091]
Doc2Botは、ユーザーが会話を通じて情報を求めるのを助けるマシンを構築するためのデータセットである。
われわれのデータセットには、5つのドメインの中国の文書に基づく10万回以上のターンが含まれている。
論文 参考訳(メタデータ) (2022-10-20T07:33:05Z) - Dialog Acts for Task-Driven Embodied Agents [10.275619475149433]
エージェントは自然言語の理解タスク記述で対話し、適切なフォローアップ質問をすることができる必要がある。
このような対話をモデル化するためのダイアログのセットを提案し、3000以上のタスク指向の会話を含むTEAChデータセットに注釈を付ける。
この注釈付きデータセットを、与えられた発話のダイアログ動作にタグ付けし、ダイアログ履歴を与えられた次の応答のダイアログ動作を予測する訓練モデルに使用し、ダイアログ動作を使用してエージェントの非ダイアログ動作をガイドする。
論文 参考訳(メタデータ) (2022-09-26T18:41:28Z) - Manual-Guided Dialogue for Flexible Conversational Agents [84.46598430403886]
対話データを効率的に構築し、利用する方法や、さまざまなドメインにモデルを大規模にデプロイする方法は、タスク指向の対話システムを構築する上で重要な問題である。
エージェントは対話とマニュアルの両方からタスクを学習する。
提案手法は,詳細なドメインオントロジーに対する対話モデルの依存性を低減し,様々なドメインへの適応をより柔軟にする。
論文 参考訳(メタデータ) (2022-08-16T08:21:12Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
対話システム研究における既存の研究は、主にタスク指向の対話とチャットを独立したドメインとして扱う。
本研究では,タスク指向対話と知識ベースチップチャットを一つのモデルに効果的に統合する方法について検討する。
論文 参考訳(メタデータ) (2022-05-11T16:01:03Z) - HybriDialogue: An Information-Seeking Dialogue Dataset Grounded on
Tabular and Textual Data [87.67278915655712]
我々は、ウィキペディアのテキストとテーブルの両方を基盤とした、クラウドソーシングされた自然な会話からなる新しい対話データセットHybriDialogueを提示する。
これらの会話は、複雑なマルチホップ質問をシンプルで現実的なマルチターン対話に分解することで生成される。
論文 参考訳(メタデータ) (2022-04-28T00:52:16Z) - A Unified Pre-training Framework for Conversational AI [25.514505462661763]
PLATO-2は、簡略化された1対1のマッピング関係に適合するように、2段階のカリキュラム学習によって訓練される。
PLATO-2は3つのタスクで1位を獲得し、様々な対話システムのための統一されたフレームワークとしての有効性を検証する。
論文 参考訳(メタデータ) (2021-05-06T07:27:11Z) - Reasoning in Dialog: Improving Response Generation by Context Reading
Comprehension [49.92173751203827]
マルチターンダイアログでは、発話が文の完全な形を取るとは限らない。
読み解きの質問に答えるモデルの能力を検討し、応答生成性能の向上を提案する。
論文 参考訳(メタデータ) (2020-12-14T10:58:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。