論文の概要: Dialog Acts for Task-Driven Embodied Agents
- arxiv url: http://arxiv.org/abs/2209.12953v1
- Date: Mon, 26 Sep 2022 18:41:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 14:30:47.681913
- Title: Dialog Acts for Task-Driven Embodied Agents
- Title(参考訳): タスク駆動型具体化エージェントのためのダイアログ
- Authors: Spandana Gella, Aishwarya Padmakumar, Patrick Lange, Dilek Hakkani-Tur
- Abstract要約: エージェントは自然言語の理解タスク記述で対話し、適切なフォローアップ質問をすることができる必要がある。
このような対話をモデル化するためのダイアログのセットを提案し、3000以上のタスク指向の会話を含むTEAChデータセットに注釈を付ける。
この注釈付きデータセットを、与えられた発話のダイアログ動作にタグ付けし、ダイアログ履歴を与えられた次の応答のダイアログ動作を予測する訓練モデルに使用し、ダイアログ動作を使用してエージェントの非ダイアログ動作をガイドする。
- 参考スコア(独自算出の注目度): 10.275619475149433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Embodied agents need to be able to interact in natural language understanding
task descriptions and asking appropriate follow up questions to obtain
necessary information to be effective at successfully accomplishing tasks for a
wide range of users. In this work, we propose a set of dialog acts for
modelling such dialogs and annotate the TEACh dataset that includes over 3,000
situated, task oriented conversations (consisting of 39.5k utterances in total)
with dialog acts. TEACh-DA is one of the first large scale dataset of dialog
act annotations for embodied task completion. Furthermore, we demonstrate the
use of this annotated dataset in training models for tagging the dialog acts of
a given utterance, predicting the dialog act of the next response given a
dialog history, and use the dialog acts to guide agent's non-dialog behaviour.
In particular, our experiments on the TEACh Execution from Dialog History task
where the model predicts the sequence of low level actions to be executed in
the environment for embodied task completion, demonstrate that dialog acts can
improve end task success rate by up to 2 points compared to the system without
dialog acts.
- Abstract(参考訳): 具体化されたエージェントは、自然言語理解タスク記述と適切なフォローアップ質問で対話でき、幅広いユーザのためにタスクを成功させるのに効果的な必要な情報を得る必要がある。
本研究では,このようなダイアログをモデル化するためのダイアログのセットを提案し,3000以上のタスク指向会話(合計39.5k発声)を含むTEAChデータセットにアノテートする。
TEACh-DAは、ダイアログアクトアノテーションを具現化した最初の大規模データセットの1つである。
さらに、この注釈付きデータセットを、与えられた発話のダイアログ動作にタグ付けし、ダイアログ履歴を与えられた次の応答のダイアログ動作を予測する訓練モデルに使用し、ダイアログ動作を使用してエージェントの非ダイアログ動作をガイドする。
特に,実環境において実行すべき低レベルアクションのシーケンスをモデルが予測するダイアログ履歴タスクからの指導実行実験では,ダイアログ動作が,ダイアログ動作を行わないシステムと比較して,最大2ポイントのエンドタスク成功率を向上できることを実証する。
関連論文リスト
- Multi-User MultiWOZ: Task-Oriented Dialogues among Multiple Users [51.34484827552774]
マルチユーザMulti-User MultiWOZデータセットを2つのユーザと1つのエージェント間のタスク指向対話としてリリースする。
これらの対話は、タスク指向のシナリオにおける協調的な意思決定の興味深いダイナミクスを反映している。
本稿では,複数ユーザ間のタスク指向のチャットを簡潔なタスク指向のクエリとして書き換える,マルチユーザコンテキストクエリ書き換えの新しいタスクを提案する。
論文 参考訳(メタデータ) (2023-10-31T14:12:07Z) - DiactTOD: Learning Generalizable Latent Dialogue Acts for Controllable
Task-Oriented Dialogue Systems [15.087619144902776]
本稿では,潜在空間における対話行動を表現する対話行動モデル(DiactTOD)を提案する。
大規模なコーパスで事前トレーニングを行うと、DiactTODは対話を予測し制御し、制御可能な応答を生成する。
論文 参考訳(メタデータ) (2023-08-01T23:29:16Z) - Leveraging Explicit Procedural Instructions for Data-Efficient Action
Prediction [5.448684866061922]
タスク指向の対話は、しばしばエージェントがユーザ要求を満たすために複雑で多段階の手順を実行する必要がある。
大規模言語モデルは、制約のある環境でこれらの対話を自動化することに成功したが、その広範な展開は、トレーニングに必要なタスク固有の大量のデータによって制限されている。
本稿では,エージェントガイドラインから導出した明示的な指示を利用して対話システムを構築するための,データ効率のよいソリューションを提案する。
論文 参考訳(メタデータ) (2023-06-06T18:42:08Z) - Manual-Guided Dialogue for Flexible Conversational Agents [84.46598430403886]
対話データを効率的に構築し、利用する方法や、さまざまなドメインにモデルを大規模にデプロイする方法は、タスク指向の対話システムを構築する上で重要な問題である。
エージェントは対話とマニュアルの両方からタスクを学習する。
提案手法は,詳細なドメインオントロジーに対する対話モデルの依存性を低減し,様々なドメインへの適応をより柔軟にする。
論文 参考訳(メタデータ) (2022-08-16T08:21:12Z) - Improving Zero and Few-shot Generalization in Dialogue through
Instruction Tuning [27.92734269206744]
InstructDialは対話のための命令チューニングフレームワークである。
48の多様な対話タスクからなるリポジトリからなり、59のオープンな対話データセットから作成されるテキストとテキストの統一フォーマットである。
分析の結果,InstructDialは未知のデータセットや対話評価や意図検出などのタスクに対して良好なゼロショット性能を実現し,数ショット設定でさらに優れたパフォーマンスを実現していることがわかった。
論文 参考訳(メタデータ) (2022-05-25T11:37:06Z) - KETOD: Knowledge-Enriched Task-Oriented Dialogue [77.59814785157877]
対話システム研究における既存の研究は、主にタスク指向の対話とチャットを独立したドメインとして扱う。
本研究では,タスク指向対話と知識ベースチップチャットを一つのモデルに効果的に統合する方法について検討する。
論文 参考訳(メタデータ) (2022-05-11T16:01:03Z) - User Satisfaction Estimation with Sequential Dialogue Act Modeling in
Goal-oriented Conversational Systems [65.88679683468143]
我々は,ユーザ満足度を予測するために,対話行動の逐次的ダイナミクスを取り入れた新しいフレームワーク,すなわちUSDAを提案する。
USDAは、ユーザの満足度を予測するために、コンテンツと行動機能の連続的な遷移を対話に取り入れている。
4つのベンチマーク目標指向対話データセットによる実験結果から,提案手法はUSEの既存手法よりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-02-07T02:50:07Z) - TOD-DA: Towards Boosting the Robustness of Task-oriented Dialogue
Modeling on Spoken Conversations [24.245354500835465]
本稿では,音声対話におけるタスク指向対話モデリングの堅牢性を高めるために,新しいモデルに依存しないデータ拡張パラダイムを提案する。
本手法は,音声対話におけるタスク指向対話モデリングのベンチマークであるDSTC10 Track2の両タスクにおいて,第1位となった。
論文 参考訳(メタデータ) (2021-12-23T10:04:25Z) - TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented
Dialogue [113.45485470103762]
本研究では,言語モデリングのためのタスク指向対話データセットを,人間とマルチターンの9つに統合する。
事前学習時の対話動作をモデル化するために,ユーザトークンとシステムトークンをマスク付き言語モデルに組み込む。
論文 参考訳(メタデータ) (2020-04-15T04:09:05Z) - Recent Advances and Challenges in Task-oriented Dialog System [63.82055978899631]
課題指向対話システムは、学術・産業社会でますます注目を集めている。
タスク指向ダイアログシステムにおける3つの重要なトピックについて論じる。(1)低リソース環境でのダイアログモデリングを容易にするデータ効率の改善、(2)ダイアログポリシー学習のためのマルチターンダイナミクスのモデリング、(3)ダイアログモデルへのドメイン知識の統合。
論文 参考訳(メタデータ) (2020-03-17T01:34:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。