Low-Mid Adversarial Perturbation against Unauthorized Face Recognition
System
- URL: http://arxiv.org/abs/2206.09410v2
- Date: Sun, 3 Sep 2023 03:18:01 GMT
- Title: Low-Mid Adversarial Perturbation against Unauthorized Face Recognition
System
- Authors: Jiaming Zhang, Qi Yi, Dongyuan Lu, Jitao Sang
- Abstract summary: We propose a novel solution referred to as emphlow frequency adversarial perturbation (LFAP)
This method conditions the source model to leverage low-frequency characteristics through adversarial training.
We also introduce an improved emphlow-mid frequency adversarial perturbation (LMFAP) that incorporates mid-frequency components for an additive benefit.
- Score: 20.979192130022334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In light of the growing concerns regarding the unauthorized use of facial
recognition systems and its implications on individual privacy, the exploration
of adversarial perturbations as a potential countermeasure has gained traction.
However, challenges arise in effectively deploying this approach against
unauthorized facial recognition systems due to the effects of JPEG compression
on image distribution across the internet, which ultimately diminishes the
efficacy of adversarial perturbations. Existing JPEG compression-resistant
techniques struggle to strike a balance between resistance, transferability,
and attack potency. To address these limitations, we propose a novel solution
referred to as \emph{low frequency adversarial perturbation} (LFAP). This
method conditions the source model to leverage low-frequency characteristics
through adversarial training. To further enhance the performance, we introduce
an improved \emph{low-mid frequency adversarial perturbation} (LMFAP) that
incorporates mid-frequency components for an additive benefit. Our study
encompasses a range of settings to replicate genuine application scenarios,
including cross backbones, supervisory heads, training datasets, and testing
datasets. Moreover, we evaluated our approaches on a commercial black-box API,
\texttt{Face++}. The empirical results validate the cutting-edge performance
achieved by our proposed solutions.
Related papers
- A visualization method for data domain changes in CNN networks and the optimization method for selecting thresholds in classification tasks [1.1118946307353794]
Face Anti-Spoofing (FAS) has played a crucial role in preserving the security of face recognition technology.
With the rise of counterfeit face generation techniques, the challenge posed by digitally edited faces to face anti-spoofing is escalating.
We propose a visualization method that intuitively reflects the training outcomes of models by visualizing the prediction results on datasets.
arXiv Detail & Related papers (2024-04-19T03:12:17Z) - STBA: Towards Evaluating the Robustness of DNNs for Query-Limited Black-box Scenario [50.37501379058119]
We propose the Spatial Transform Black-box Attack (STBA) to craft formidable adversarial examples in the query-limited scenario.
We show that STBA could effectively improve the imperceptibility of the adversarial examples and remarkably boost the attack success rate under query-limited settings.
arXiv Detail & Related papers (2024-03-30T13:28:53Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Modeling Spoof Noise by De-spoofing Diffusion and its Application in
Face Anti-spoofing [40.82039387208269]
We present a pioneering attempt to employ diffusion models to denoise a spoof image and restore the genuine image.
The difference between these two images is considered as the spoof noise, which can serve as a discriminative cue for face anti-spoofing.
arXiv Detail & Related papers (2024-01-16T10:54:37Z) - Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
We propose a unified framework Adv-Diffusion that can generate imperceptible adversarial identity perturbations in the latent space but not the raw pixel space.
Specifically, we propose the identity-sensitive conditioned diffusion generative model to generate semantic perturbations in the surroundings.
The designed adaptive strength-based adversarial perturbation algorithm can ensure both attack transferability and stealthiness.
arXiv Detail & Related papers (2023-12-18T15:25:23Z) - LFAA: Crafting Transferable Targeted Adversarial Examples with
Low-Frequency Perturbations [25.929492841042666]
We present a novel approach to generate transferable targeted adversarial examples.
We exploit the vulnerability of deep neural networks to perturbations on high-frequency components of images.
Our proposed approach significantly outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-10-31T04:54:55Z) - Attribute-Guided Encryption with Facial Texture Masking [64.77548539959501]
We propose Attribute Guided Encryption with Facial Texture Masking to protect users from unauthorized facial recognition systems.
Our proposed method produces more natural-looking encrypted images than state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T23:50:43Z) - Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth
Uncertainty Learning [54.15303628138665]
Face anti-spoofing (FAS) plays a vital role in preventing face recognition systems from presentation attacks.
Existing face anti-spoofing datasets lack diversity due to the insufficient identity and insignificant variance.
We propose Dual Spoof Disentanglement Generation framework to tackle this challenge by "anti-spoofing via generation"
arXiv Detail & Related papers (2021-12-01T15:36:59Z) - Face Anti-Spoofing Via Disentangled Representation Learning [90.90512800361742]
Face anti-spoofing is crucial to security of face recognition systems.
We propose a novel perspective of face anti-spoofing that disentangles the liveness features and content features from images.
arXiv Detail & Related papers (2020-08-19T03:54:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.