論文の概要: A Neural Network Based Method with Transfer Learning for Genetic Data
Analysis
- arxiv url: http://arxiv.org/abs/2206.09872v1
- Date: Mon, 20 Jun 2022 16:16:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-22 19:57:02.766888
- Title: A Neural Network Based Method with Transfer Learning for Genetic Data
Analysis
- Title(参考訳): 遺伝的データ解析のためのトランスファー学習を用いたニューラルネットワーク手法
- Authors: Jinghang Lin, Shan Zhang, Qing Lu
- Abstract要約: 我々はトランスファーラーニング手法とニューラルネットワークに基づく手法(外乱ニューラルネットワーク)を組み合わせる。
これまでの学習を活用して、ゼロから始めることを避けて、モデルのパフォーマンスを改善します。
トランスファーラーニングアルゴリズムを用いることで、トランスファーラーニング技術を用いることなく、期待できるニューラルネットワークと比較して、期待できるニューラルネットワークの性能が向上する。
- 参考スコア(独自算出の注目度): 3.8599966694228667
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Transfer learning has emerged as a powerful technique in many application
problems, such as computer vision and natural language processing. However,
this technique is largely ignored in application to genetic data analysis. In
this paper, we combine transfer learning technique with a neural network based
method(expectile neural networks). With transfer learning, instead of starting
the learning process from scratch, we start from one task that have been
learned when solving a different task. We leverage previous learnings and avoid
starting from scratch to improve the model performance by passing information
gained in different but related task. To demonstrate the performance, we run
two real data sets. By using transfer learning algorithm, the performance of
expectile neural networks is improved compared to expectile neural network
without using transfer learning technique.
- Abstract(参考訳): 転送学習は、コンピュータビジョンや自然言語処理など、多くのアプリケーション問題において強力な技術として登場してきた。
しかし、この手法は遺伝データ解析にはほとんど適用されない。
本稿では,トランスファー学習手法とニューラルネットワークに基づく手法(外乱ニューラルネットワーク)を組み合わせる。
転送学習では、スクラッチから学習プロセスを開始するのではなく、異なるタスクを解決する際に学習された1つのタスクから始めます。
従来の学習を活用してゼロから始めることを回避し、異なるタスクで得られた情報を渡すことによってモデル性能を改善する。
性能を示すために、2つの実際のデータセットを実行する。
転送学習アルゴリズムを用いることで、転送学習技術を用いることなく、期待ニューラルネットと比較して期待ニューラルネットの性能が向上する。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Simple and Effective Transfer Learning for Neuro-Symbolic Integration [50.592338727912946]
この問題の潜在的な解決策はNeuro-Symbolic Integration (NeSy)であり、ニューラルアプローチとシンボリック推論を組み合わせる。
これらの手法のほとんどは、認識をシンボルにマッピングするニューラルネットワークと、下流タスクの出力を予測する論理的論理的推論を利用する。
それらは、緩やかな収束、複雑な知覚タスクの学習困難、局所的なミニマへの収束など、いくつかの問題に悩まされている。
本稿では,これらの問題を改善するための簡易かつ効果的な方法を提案する。
論文 参考訳(メタデータ) (2024-02-21T15:51:01Z) - A Novel Method for improving accuracy in neural network by reinstating
traditional back propagation technique [0.0]
本稿では,各層における勾配計算の必要性を解消する新しい瞬時パラメータ更新手法を提案する。
提案手法は,学習を加速し,消失する勾配問題を回避し,ベンチマークデータセット上で最先端の手法より優れる。
論文 参考訳(メタデータ) (2023-08-09T16:41:00Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Being Friends Instead of Adversaries: Deep Networks Learn from Data
Simplified by Other Networks [23.886422706697882]
フレンドリートレーニング(Friendly Training)は、自動的に推定される摂動を追加することで入力データを変更するものである。
本稿では,ニューラルネットワークの有効性に触発されて,このアイデアを再考し,拡張する。
本稿では,入力データの変更に責任を負う補助的な多層ネットワークを提案する。
論文 参考訳(メタデータ) (2021-12-18T16:59:35Z) - Neuronal Learning Analysis using Cycle-Consistent Adversarial Networks [4.874780144224057]
我々は、-CycleGANと呼ばれる深層生成モデルを用いて、前学習と後学習の神経活動の間の未知のマッピングを学習する。
我々は,カルシウム蛍光信号を前処理し,訓練し,評価するためのエンドツーエンドパイプラインを開発し,その結果の深層学習モデルを解釈する手法を開発した。
論文 参考訳(メタデータ) (2021-11-25T13:24:19Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Incremental Embedding Learning via Zero-Shot Translation [65.94349068508863]
現在の最先端のインクリメンタル学習手法は、従来の分類ネットワークにおける破滅的な忘れ方問題に取り組む。
ゼロショット変換クラス増分法(ZSTCI)と呼ばれる新しい組込みネットワークのクラス増分法を提案する。
さらに、ZSTCIを既存の正規化ベースのインクリメンタル学習手法と組み合わせることで、組み込みネットワークの性能をより向上させることができる。
論文 参考訳(メタデータ) (2020-12-31T08:21:37Z) - Malicious Network Traffic Detection via Deep Learning: An Information
Theoretic View [0.0]
本研究では,ホメオモルフィズムがマルウェアのトラフィックデータセットの学習表現に与える影響について検討する。
この結果から,学習された表現の詳細と,すべてのパラメータの多様体上で定義された特定の座標系は,関数近似とは全く異なることが示唆された。
論文 参考訳(メタデータ) (2020-09-16T15:37:44Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z) - Inter- and Intra-domain Knowledge Transfer for Related Tasks in Deep
Character Recognition [2.320417845168326]
ImageNetデータセットでディープニューラルネットワークを事前トレーニングすることは、ディープラーニングモデルをトレーニングするための一般的なプラクティスである。
1つのタスクで事前トレーニングを行い、新しいタスクで再トレーニングするテクニックは、トランスファーラーニング(transfer learning)と呼ばれる。
本稿では,文字認識タスクにおけるDeep Transfer Learningの有効性について分析する。
論文 参考訳(メタデータ) (2020-01-02T14:18:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。