Federated Stochastic Approximation under Markov Noise and Heterogeneity: Applications in Reinforcement Learning
- URL: http://arxiv.org/abs/2206.10185v2
- Date: Mon, 21 Oct 2024 07:30:29 GMT
- Title: Federated Stochastic Approximation under Markov Noise and Heterogeneity: Applications in Reinforcement Learning
- Authors: Sajad Khodadadian, Pranay Sharma, Gauri Joshi, Siva Theja Maguluri,
- Abstract summary: Federated reinforcement learning is a framework in which $N$ agents collaboratively learn a global model.
We show that by careful collaboration of the agents in solving this joint fixed point problem, we can find the global model $N$ times faster.
- Score: 24.567125948995834
- License:
- Abstract: Since reinforcement learning algorithms are notoriously data-intensive, the task of sampling observations from the environment is usually split across multiple agents. However, transferring these observations from the agents to a central location can be prohibitively expensive in terms of communication cost, and it can also compromise the privacy of each agent's local behavior policy. Federated reinforcement learning is a framework in which $N$ agents collaboratively learn a global model, without sharing their individual data and policies. This global model is the unique fixed point of the average of $N$ local operators, corresponding to the $N$ agents. Each agent maintains a local copy of the global model and updates it using locally sampled data. In this paper, we show that by careful collaboration of the agents in solving this joint fixed point problem, we can find the global model $N$ times faster, also known as linear speedup. We first propose a general framework for federated stochastic approximation with Markovian noise and heterogeneity, showing linear speedup in convergence. We then apply this framework to federated reinforcement learning algorithms, examining the convergence of federated on-policy TD, off-policy TD, and $Q$-learning.
Related papers
- Self-Localized Collaborative Perception [49.86110931859302]
We propose$mathttCoBEVGlue$, a novel self-localized collaborative perception system.
$mathttCoBEVGlue$ is a novel spatial alignment module, which provides the relative poses between agents.
$mathttCoBEVGlue$ achieves state-of-the-art detection performance under arbitrary localization noises and attacks.
arXiv Detail & Related papers (2024-06-18T15:26:54Z) - FedLPA: One-shot Federated Learning with Layer-Wise Posterior Aggregation [7.052566906745796]
FedLPA is a layer-wise posterior aggregation method for federated learning.
We show that FedLPA significantly improves learning performance over state-of-the-art methods across several metrics.
arXiv Detail & Related papers (2023-09-30T10:51:27Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - On the Convergence of Heterogeneous Federated Learning with Arbitrary
Adaptive Online Model Pruning [15.300983585090794]
We present a unifying framework for heterogeneous FL algorithms with em arbitrary adaptive online model pruning.
In particular, we prove that under certain sufficient conditions, these algorithms converge to a stationary point of standard FL for general smooth cost functions.
We illuminate two key factors impacting convergence: pruning-induced noise and minimum coverage index.
arXiv Detail & Related papers (2022-01-27T20:43:38Z) - Convergence Rates of Average-Reward Multi-agent Reinforcement Learning
via Randomized Linear Programming [41.30044824711509]
We focus on the case that the global reward is a sum of local rewards, the joint policy factorizes into agents' marginals, and full state observability.
We develop multi-agent extensions, whereby agents solve their local saddle point problems and then perform local weighted averaging.
We establish that the sample complexity to obtain near-globally optimal solutions matches tight dependencies on the cardinality of the state and action spaces.
arXiv Detail & Related papers (2021-10-22T03:48:41Z) - Dimension-Free Rates for Natural Policy Gradient in Multi-Agent
Reinforcement Learning [22.310861786709538]
We propose a scalable algorithm for cooperative multi-agent reinforcement learning.
We show that our algorithm converges to the globally optimal policy with a dimension-free statistical and computational complexity.
arXiv Detail & Related papers (2021-09-23T23:38:15Z) - Locality Matters: A Scalable Value Decomposition Approach for
Cooperative Multi-Agent Reinforcement Learning [52.7873574425376]
Cooperative multi-agent reinforcement learning (MARL) faces significant scalability issues due to state and action spaces that are exponentially large in the number of agents.
We propose a novel, value-based multi-agent algorithm called LOMAQ, which incorporates local rewards in the Training Decentralized Execution paradigm.
arXiv Detail & Related papers (2021-09-22T10:08:15Z) - Learning Connectivity for Data Distribution in Robot Teams [96.39864514115136]
We propose a task-agnostic, decentralized, low-latency method for data distribution in ad-hoc networks using Graph Neural Networks (GNN)
Our approach enables multi-agent algorithms based on global state information to function by ensuring it is available at each robot.
We train the distributed GNN communication policies via reinforcement learning using the average Age of Information as the reward function and show that it improves training stability compared to task-specific reward functions.
arXiv Detail & Related papers (2021-03-08T21:48:55Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z) - Multi-Agent Reinforcement Learning in Stochastic Networked Systems [30.78949372661673]
We study multi-agent reinforcement learning (MARL) in a network of agents.
The objective is to find localized policies that maximize the (discounted) global reward.
arXiv Detail & Related papers (2020-06-11T16:08:16Z) - Dynamic Federated Learning [57.14673504239551]
Federated learning has emerged as an umbrella term for centralized coordination strategies in multi-agent environments.
We consider a federated learning model where at every iteration, a random subset of available agents perform local updates based on their data.
Under a non-stationary random walk model on the true minimizer for the aggregate optimization problem, we establish that the performance of the architecture is determined by three factors, namely, the data variability at each agent, the model variability across all agents, and a tracking term that is inversely proportional to the learning rate of the algorithm.
arXiv Detail & Related papers (2020-02-20T15:00:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.