論文の概要: LDD: A Dataset for Grape Diseases Object Detection and Instance
Segmentation
- arxiv url: http://arxiv.org/abs/2206.10192v1
- Date: Tue, 21 Jun 2022 08:50:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-23 03:23:32.884289
- Title: LDD: A Dataset for Grape Diseases Object Detection and Instance
Segmentation
- Title(参考訳): LDD: Grape Diseases Object Detection and Instance Segmentationのためのデータセット
- Authors: Leonardo Rossi, Marco Valenti, Sara Elisabetta Legler, Andrea Prati
- Abstract要約: インスタンスセグメンテーションアプローチによる疾患認識の最先端化を目標として、新たなデータセットが作成されている。
これは、自然の文脈で病気によって影響を受ける葉やブドウの群れのイメージを集めることで達成された。
このデータセットには、より一般的な8つのブドウ病の症状のない葉やブドウを含む10種類のオブジェクトの写真が含まれており、1,092枚の画像に合計17,706個のラベルが付けられている。
- 参考スコア(独自算出の注目度): 2.966925013268916
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The Instance Segmentation task, an extension of the well-known Object
Detection task, is of great help in many areas, such as precision agriculture:
being able to automatically identify plant organs and the possible diseases
associated with them, allows to effectively scale and automate crop monitoring
and its diseases control. To address the problem related to early disease
detection and diagnosis on vines plants, a new dataset has been created with
the goal of advancing the state-of-the-art of diseases recognition via instance
segmentation approaches. This was achieved by gathering images of leaves and
clusters of grapes affected by diseases in their natural context. The dataset
contains photos of 10 object types which include leaves and grapes with and
without symptoms of the eight more common grape diseases, with a total of
17,706 labeled instances in 1,092 images. Multiple statistical measures are
proposed in order to offer a complete view on the characteristics of the
dataset. Preliminary results for the object detection and instance segmentation
tasks reached by the models Mask R-CNN and R^3-CNN are provided as baseline,
demonstrating that the procedure is able to reach promising results about the
objective of automatic diseases' symptoms recognition.
- Abstract(参考訳): 既知のオブジェクト検出タスクの拡張であるインスタンスセグメンテーションタスクは、精密農業など、多くの領域で非常に役に立ちます: 植物器官とそれに関連する可能性のある疾患を自動的に識別することができ、作物の監視と病気管理を効果的にスケールし、自動化できます。
ブドウの早期検出と診断に関わる問題に対処するため,インスタンスセグメンテーションアプローチによる疾患認識の最先端化を目標として,新たなデータセットが作成されている。
これは、自然の状況で病気の影響を受ける葉やブドウの群れの画像を収集することで達成された。
このデータセットには、より一般的な8つのブドウ病の症状のない葉やブドウを含む10種類のオブジェクトの写真が含まれており、1,092枚の画像に合計17,706個のラベルが付けられている。
データセットの特性に関する完全なビューを提供するために、複数の統計指標が提案されている。
モデルであるMask R-CNNとR^3-CNNのオブジェクト検出およびインスタンス分割タスクの予備的な結果がベースラインとして提供され、自動疾患の症状認識の目的に関する有望な結果が得られることを示す。
関連論文リスト
- PlantSeg: A Large-Scale In-the-wild Dataset for Plant Disease Segmentation [37.383095056084834]
植物病データセットは一般的にセグメンテーションラベルを欠いている。
実験室の設定からの画像を含む典型的なデータセットとは異なり、PlanetSegは主に野生の植物病の画像で構成されている。
植物セグは11,400枚の画像と病気のセグメンテーションマスクと、植物の種類によって分類された8000枚の健康な植物画像が特徴である。
論文 参考訳(メタデータ) (2024-09-06T06:11:28Z) - Self-supervised transformer-based pre-training method with General Plant Infection dataset [3.969851116372513]
本研究では、コントラスト学習とマスクド画像モデリング(MIM)を組み合わせた高度なネットワークアーキテクチャを提案する。
提案するネットワークアーキテクチャは,植物害虫や病原体認識タスクに対処し,優れた検出精度を実現する。
私たちのコードとデータセットは、植物害虫の研究と病気の認識を促進するために公開されます。
論文 参考訳(メタデータ) (2024-07-20T15:48:35Z) - Visual Context-Aware Person Fall Detection [52.49277799455569]
画像中の個人とオブジェクトを半自動分離するセグメンテーションパイプラインを提案する。
ベッド、椅子、車椅子などの背景オブジェクトは、転倒検知システムに挑戦し、誤ったポジティブアラームを引き起こす。
トレーニング中のオブジェクト固有のコンテキスト変換が、この課題を効果的に軽減することを示す。
論文 参考訳(メタデータ) (2024-04-11T19:06:36Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
本稿では, 条件付き生成逆学習を用いたX線疾患発生のための新しいアプローチを提案する。
我々は,患者の身元を保存しながら,対象領域に対応する放射線画像を生成する。
次に、ターゲット領域で生成されたX線画像を用いてトレーニングを増強し、検出性能を向上させる。
論文 参考訳(メタデータ) (2021-10-25T14:15:57Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
近年のディープラーニングの進歩は、様々なコンピュータビジョンアプリケーションのための正確で効率的なモデルの開発につながっている。
高度に正確なモデルを学ぶには、大量の注釈付きイメージを持つデータセットの可用性に依存する。
このため、ラベルスカースデータセットに視覚的に異なる画像がある場合、モデルの性能は大幅に低下する。
論文 参考訳(メタデータ) (2021-05-27T23:34:06Z) - Leaf Image-based Plant Disease Identification using Color and Texture
Features [0.1657441317977376]
自己収集されたデータセットの精度は、病気の識別に82.47%、健康と疾患の分類に91.40%である。
このプロトタイプシステムは、より多くの病種を追加したり、特定の作物や病種をターゲットにすることで拡張することができる。
論文 参考訳(メタデータ) (2021-02-08T20:32:56Z) - Real-time Plant Health Assessment Via Implementing Cloud-based Scalable
Transfer Learning On AWS DeepLens [0.8714677279673736]
植物葉病の検出・分類のための機械学習手法を提案する。
私たちは、AWS SageMaker上でスケーラブルな転送学習を使用して、リアルタイムの実用的なユーザビリティのために、AWS DeepLensにインポートしています。
果実や野菜の健康・不健康な葉の広範な画像データセットに関する実験では,植物葉病のリアルタイム診断で98.78%の精度を示した。
論文 参考訳(メタデータ) (2020-09-09T05:23:34Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z) - The Plant Pathology 2020 challenge dataset to classify foliar disease of
apples [0.0]
米国のリンゴ果樹園は、多くの病原体や昆虫から常に脅威にさらされている。病気管理の適正かつタイムリーな展開は、早期の疾患検出に依存している。
我々は,複数のリンゴ葉病の高画質・実生症状画像3,651枚を手作業で取得した。
リンゴの皮、スギのリンゴのさび、健康な葉のパイロットデータセットを作成するために専門家が注釈を付けたサブセットが、Kaggleコミュニティの'Plant Pathology Challenge'で利用可能になった。
論文 参考訳(メタデータ) (2020-04-24T19:36:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。