LDD: A Dataset for Grape Diseases Object Detection and Instance
Segmentation
- URL: http://arxiv.org/abs/2206.10192v1
- Date: Tue, 21 Jun 2022 08:50:13 GMT
- Title: LDD: A Dataset for Grape Diseases Object Detection and Instance
Segmentation
- Authors: Leonardo Rossi, Marco Valenti, Sara Elisabetta Legler, Andrea Prati
- Abstract summary: A new dataset has been created with the goal of advancing the state-of-the-art of diseases recognition via instance segmentation approaches.
This was achieved by gathering images of leaves and clusters of grapes affected by diseases in their natural context.
The dataset contains photos of 10 object types which include leaves and grapes with and without symptoms of the eight more common grape diseases, with a total of 17,706 labeled instances in 1,092 images.
- Score: 2.966925013268916
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The Instance Segmentation task, an extension of the well-known Object
Detection task, is of great help in many areas, such as precision agriculture:
being able to automatically identify plant organs and the possible diseases
associated with them, allows to effectively scale and automate crop monitoring
and its diseases control. To address the problem related to early disease
detection and diagnosis on vines plants, a new dataset has been created with
the goal of advancing the state-of-the-art of diseases recognition via instance
segmentation approaches. This was achieved by gathering images of leaves and
clusters of grapes affected by diseases in their natural context. The dataset
contains photos of 10 object types which include leaves and grapes with and
without symptoms of the eight more common grape diseases, with a total of
17,706 labeled instances in 1,092 images. Multiple statistical measures are
proposed in order to offer a complete view on the characteristics of the
dataset. Preliminary results for the object detection and instance segmentation
tasks reached by the models Mask R-CNN and R^3-CNN are provided as baseline,
demonstrating that the procedure is able to reach promising results about the
objective of automatic diseases' symptoms recognition.
Related papers
- PlantSeg: A Large-Scale In-the-wild Dataset for Plant Disease Segmentation [37.383095056084834]
Plant disease datasets typically lack segmentation labels.
Unlike typical datasets that contain images from laboratory settings, PlantSeg primarily comprises in-the-wild plant disease images.
PlantSeg is extensive, featuring 11,400 images with disease segmentation masks and an additional 8,000 healthy plant images categorized by plant type.
arXiv Detail & Related papers (2024-09-06T06:11:28Z) - Self-supervised transformer-based pre-training method with General Plant Infection dataset [3.969851116372513]
This study proposes an advanced network architecture that combines Contrastive Learning and Masked Image Modeling (MIM)
The proposed network architecture demonstrates effectiveness in addressing plant pest and disease recognition tasks, achieving notable detection accuracy.
Our code and dataset will be publicly available to advance research in plant pest and disease recognition.
arXiv Detail & Related papers (2024-07-20T15:48:35Z) - Visual Context-Aware Person Fall Detection [52.49277799455569]
We present a segmentation pipeline to semi-automatically separate individuals and objects in images.
Background objects such as beds, chairs, or wheelchairs can challenge fall detection systems, leading to false positive alarms.
We demonstrate that object-specific contextual transformations during training effectively mitigate this challenge.
arXiv Detail & Related papers (2024-04-11T19:06:36Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
This paper presents a deep learning approach to automatically recognize powdery mildew on cucumber leaves.
We focus on unsupervised deep learning techniques applied to multispectral imaging data.
We propose the use of autoencoder architectures to investigate two strategies for disease detection.
arXiv Detail & Related papers (2021-12-20T13:29:13Z) - Generative Residual Attention Network for Disease Detection [51.60842580044539]
We present a novel approach for disease generation in X-rays using a conditional generative adversarial learning.
We generate a corresponding radiology image in a target domain while preserving the identity of the patient.
We then use the generated X-ray image in the target domain to augment our training to improve the detection performance.
arXiv Detail & Related papers (2021-10-25T14:15:57Z) - Unsupervised Domain Adaption of Object Detectors: A Survey [87.08473838767235]
Recent advances in deep learning have led to the development of accurate and efficient models for various computer vision applications.
Learning highly accurate models relies on the availability of datasets with a large number of annotated images.
Due to this, model performance drops drastically when evaluated on label-scarce datasets having visually distinct images.
arXiv Detail & Related papers (2021-05-27T23:34:06Z) - Leaf Image-based Plant Disease Identification using Color and Texture
Features [0.1657441317977376]
The accuracy on a self-collected dataset is 82.47% for disease identification and 91.40% for healthy and diseased classification.
This prototype system can be extended by adding more disease categories or targeting specific crop or disease categories.
arXiv Detail & Related papers (2021-02-08T20:32:56Z) - Real-time Plant Health Assessment Via Implementing Cloud-based Scalable
Transfer Learning On AWS DeepLens [0.8714677279673736]
We propose a machine learning approach to detect and classify plant leaf disease.
We use scalable transfer learning on AWS SageMaker and importing it on AWS DeepLens for real-time practical usability.
Our experiments on extensive image data set of healthy and unhealthy leaves of fruits and vegetables showed an accuracy of 98.78% with a real-time diagnosis of plant leaves diseases.
arXiv Detail & Related papers (2020-09-09T05:23:34Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - The Plant Pathology 2020 challenge dataset to classify foliar disease of
apples [0.0]
Apple orchards in the U.S. are under constant threat from a large number of pathogens and insects. Appropriate and timely deployment of disease management depends on early disease detection.
We have manually captured 3,651 high-quality, real-life symptom images of multiple apple foliar diseases.
A subset, expert-annotated to create a pilot dataset for apple scab, cedar apple rust, and healthy leaves, was made available to the Kaggle community for 'Plant Pathology Challenge'
arXiv Detail & Related papers (2020-04-24T19:36:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.