Personalized Subgraph Federated Learning
- URL: http://arxiv.org/abs/2206.10206v3
- Date: Mon, 22 May 2023 17:46:44 GMT
- Title: Personalized Subgraph Federated Learning
- Authors: Jinheon Baek, Wonyong Jeong, Jiongdao Jin, Jaehong Yoon, Sung Ju Hwang
- Abstract summary: We introduce a new subgraph FL problem, personalized subgraph FL, which focuses on the joint improvement of the interrelated local GNNs.
We propose a novel framework, FEDerated Personalized sUBgraph learning (FED-PUB), to tackle it.
We validate our FED-PUB for its subgraph FL performance on six datasets, considering both non-overlapping and overlapping subgraphs.
- Score: 56.52903162729729
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Subgraphs of a larger global graph may be distributed across multiple
devices, and only locally accessible due to privacy restrictions, although
there may be links between subgraphs. Recently proposed subgraph Federated
Learning (FL) methods deal with those missing links across local subgraphs
while distributively training Graph Neural Networks (GNNs) on them. However,
they have overlooked the inevitable heterogeneity between subgraphs comprising
different communities of a global graph, consequently collapsing the
incompatible knowledge from local GNN models. To this end, we introduce a new
subgraph FL problem, personalized subgraph FL, which focuses on the joint
improvement of the interrelated local GNNs rather than learning a single global
model, and propose a novel framework, FEDerated Personalized sUBgraph learning
(FED-PUB), to tackle it. Since the server cannot access the subgraph in each
client, FED-PUB utilizes functional embeddings of the local GNNs using random
graphs as inputs to compute similarities between them, and use the similarities
to perform weighted averaging for server-side aggregation. Further, it learns a
personalized sparse mask at each client to select and update only the
subgraph-relevant subset of the aggregated parameters. We validate our FED-PUB
for its subgraph FL performance on six datasets, considering both
non-overlapping and overlapping subgraphs, on which it significantly
outperforms relevant baselines. Our code is available at
https://github.com/JinheonBaek/FED-PUB.
Related papers
- Federated Graph Learning with Structure Proxy Alignment [43.13100155569234]
Federated Graph Learning (FGL) aims to learn graph learning models over graph data distributed in multiple data owners.
We propose FedSpray, a novel FGL framework that learns local class-wise structure proxies in the latent space.
Our goal is to obtain the aligned structure proxies that can serve as reliable, unbiased neighboring information for node classification.
arXiv Detail & Related papers (2024-08-18T07:32:54Z) - SSHPool: The Separated Subgraph-based Hierarchical Pooling [47.78745802682822]
We develop a novel local graph pooling method, namely the Separated Subgraph-based Hierarchical Pooling (SSH) for graph classification.
We individually employ the local graph convolution units as the local structure to further compress each subgraph into a coarsened node.
We develop an end-to-end GNN framework associated with the SSHPool module for graph classification.
arXiv Detail & Related papers (2024-03-24T13:03:35Z) - FedGT: Federated Node Classification with Scalable Graph Transformer [27.50698154862779]
We propose a scalable textbfFederated textbfGraph textbfTransformer (textbfFedGT) in the paper.
FedGT computes clients' similarity based on the aligned global nodes with optimal transport.
arXiv Detail & Related papers (2024-01-26T21:02:36Z) - MGNet: Learning Correspondences via Multiple Graphs [78.0117352211091]
Learning correspondences aims to find correct correspondences from the initial correspondence set with an uneven correspondence distribution and a low inlier rate.
Recent advances usually use graph neural networks (GNNs) to build a single type of graph or stack local graphs into the global one to complete the task.
We propose MGNet to effectively combine multiple complementary graphs.
arXiv Detail & Related papers (2024-01-10T07:58:44Z) - Chasing Fairness in Graphs: A GNN Architecture Perspective [73.43111851492593]
We propose textsfFair textsfMessage textsfPassing (FMP) designed within a unified optimization framework for graph neural networks (GNNs)
In FMP, the aggregation is first adopted to utilize neighbors' information and then the bias mitigation step explicitly pushes demographic group node presentation centers together.
Experiments on node classification tasks demonstrate that the proposed FMP outperforms several baselines in terms of fairness and accuracy on three real-world datasets.
arXiv Detail & Related papers (2023-12-19T18:00:15Z) - Graph Ladling: Shockingly Simple Parallel GNN Training without
Intermediate Communication [100.51884192970499]
GNNs are a powerful family of neural networks for learning over graphs.
scaling GNNs either by deepening or widening suffers from prevalent issues of unhealthy gradients, over-smoothening, information squashing.
We propose not to deepen or widen current GNNs, but instead present a data-centric perspective of model soups tailored for GNNs.
arXiv Detail & Related papers (2023-06-18T03:33:46Z) - Stochastic Subgraph Neighborhood Pooling for Subgraph Classification [2.1270496914042996]
Subgraph Neighborhood Pooling (SSNP) jointly aggregates the subgraph and its neighborhood information without any computationally expensive operations such as labeling tricks.
Our experiments demonstrate that our models outperform current state-of-the-art methods (with a margin of up to 2%) while being up to 3X faster in training.
arXiv Detail & Related papers (2023-04-17T18:49:18Z) - Bring Your Own View: Graph Neural Networks for Link Prediction with
Personalized Subgraph Selection [57.34881616131377]
We introduce a Personalized Subgraph Selector (PS2) as a plug-and-play framework to automatically, personally, and inductively identify optimal subgraphs for different edges.
PS2 is instantiated as a bi-level optimization problem that can be efficiently solved differently.
We suggest a brand-new angle towards GNNLP training: by first identifying the optimal subgraphs for edges; and then focusing on training the inference model by using the sampled subgraphs.
arXiv Detail & Related papers (2022-12-23T17:30:19Z) - Subgraph Federated Learning with Missing Neighbor Generation [24.179417092273187]
Subgraph federated learning aims to collaboratively train a powerful and generalizable graph mining model without directly sharing their graph data.
In this work, we propose two major techniques: (1) FedSage, which trains a GraphSage model based on FedAvg to integrate node features, link structures, and task labels on multiple local subgraphs; (2) FedSage+, which trains a missing neighbor generator along FedSage to deal with missing links across local subgraphs.
arXiv Detail & Related papers (2021-06-25T04:58:55Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.