論文の概要: muBoost: An Effective Method for Solving Indic Multilingual Text
Classification Problem
- arxiv url: http://arxiv.org/abs/2206.10280v1
- Date: Tue, 21 Jun 2022 12:06:03 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-22 14:05:20.095340
- Title: muBoost: An Effective Method for Solving Indic Multilingual Text
Classification Problem
- Title(参考訳): muBoost: インデックス多言語テキスト分類問題の効果的な解法
- Authors: Manish Pathak, Aditya Jain
- Abstract要約: 我々はMoj上で多言語乱用コメント識別問題に対する解決策を提示している。
この問題は、13の地域インド語で虐待的なコメントを検出することに対処した。
テストデータから平均F1スコアが89.286、ベースラインMURILモデルが87.48で改善された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text Classification is an integral part of many Natural Language Processing
tasks such as sarcasm detection, sentiment analysis and many more such
applications. Many e-commerce websites, social-media/entertainment platforms
use such models to enhance user-experience to generate traffic and thus,
revenue on their platforms. In this paper, we are presenting our solution to
Multilingual Abusive Comment Identification Problem on Moj, an Indian
video-sharing social networking service, powered by ShareChat. The problem
dealt with detecting abusive comments, in 13 regional Indic languages such as
Hindi, Telugu, Kannada etc., on the videos on Moj platform. Our solution
utilizes the novel muBoost, an ensemble of CatBoost classifier models and
Multilingual Representations for Indian Languages (MURIL) model, to produce
SOTA performance on Indic text classification tasks. We were able to achieve a
mean F1-score of 89.286 on the test data, an improvement over baseline MURIL
model with a F1-score of 87.48.
- Abstract(参考訳): テキスト分類は、サーカズム検出、感情分析など、多くの自然言語処理タスクにおいて不可欠な部分である。
多くのeコマースサイトやソーシャルメディア/エンタテイメントプラットフォームは、そのようなモデルを使ってユーザーエクスペリエンスを高め、トラフィックを生み出し、プラットフォームでの収益を上げている。
本稿では,sharechatを利用したインドのビデオ共有ソーシャルネットワーキングサービスmojにおける,多言語攻撃的コメント識別問題に対する解決策を提案する。
この問題は、ヒンディー語、テルグ語、カンナダ語などの13の地域言語で、mojプラットフォーム上のビデオで乱暴なコメントを検出することに対処した。
本手法は,インド言語(muril)モデルのためのcatboost分類器モデルと多言語表現のアンサンブルであるmuboostを用いて,indicテキスト分類タスクでsoma性能を生成する。
試験データ上での平均f1-scoreは89.286で,f1-scoreが87.48のベースラインmurilモデルよりも改善した。
関連論文リスト
- Prompt Engineering Using GPT for Word-Level Code-Mixed Language Identification in Low-Resource Dravidian Languages [0.0]
インドのような多言語社会では、テキストはしばしばコードミキシングを示し、異なる言語レベルで現地の言語と英語をブレンドする。
本稿では,Dravidian言語における単語レベルのLI課題への対処を目的とした,共有タスクのプロンプトベース手法を提案する。
本研究では,GPT-3.5 Turboを用いて,大言語モデルが単語を正しいカテゴリに分類できるかどうかを検証した。
論文 参考訳(メタデータ) (2024-11-06T16:20:37Z) - Navigating Text-to-Image Generative Bias across Indic Languages [53.92640848303192]
本研究ではインドで広く話されているIndic言語に対するテキスト・ツー・イメージ(TTI)モデルのバイアスについて検討する。
これらの言語における主要なTTIモデルの生成的パフォーマンスと文化的関連性を評価し,比較する。
論文 参考訳(メタデータ) (2024-08-01T04:56:13Z) - ChatGPT Beyond English: Towards a Comprehensive Evaluation of Large
Language Models in Multilingual Learning [70.57126720079971]
大規模言語モデル(LLM)は、自然言語処理(NLP)において最も重要なブレークスルーとして登場した。
本稿では,高,中,低,低リソースの37言語を対象として,ChatGPTを7つのタスクで評価する。
従来のモデルと比較すると,様々なNLPタスクや言語に対するChatGPTの性能は低下していた。
論文 参考訳(メタデータ) (2023-04-12T05:08:52Z) - A New Generation of Perspective API: Efficient Multilingual
Character-level Transformers [66.9176610388952]
Google JigsawのAspective APIの次期バージョンの基礎を提示する。
このアプローチの中心は、単一の多言語トークンフリーなCharformerモデルである。
静的な語彙を強制することで、さまざまな設定で柔軟性が得られます。
論文 参考訳(メタデータ) (2022-02-22T20:55:31Z) - Toxicity Detection for Indic Multilingual Social Media Content [0.0]
本稿では、emphIIIT-D Abusive Comment Identification Challengeにおいて、ShareChat/Mojが提供するデータを用いて、チーム「Moj Masti」によって提案されたシステムについて述べる。
我々は、多言語トランスフォーマーに基づく事前訓練および微調整モデルを用いて、コード混在/コード切替型分類タスクにアプローチする方法に焦点をあてる。
論文 参考訳(メタデータ) (2022-01-03T12:01:47Z) - Ceasing hate withMoH: Hate Speech Detection in Hindi-English
Code-Switched Language [2.9926023796813728]
本研究はヒンディー語・英語のコードスイッチング言語におけるヘイトスピーチの分析に焦点をあてる。
データ構造を含むため、Hindi の "Love" を意味する MoH または Map Only Hindi を開発した。
MoHパイプラインは言語識別で構成され、ローマ語からデヴァナガリ・ヒンディー語への翻訳は、ローマ語のヒンディー語の知識ベースを用いて行われる。
論文 参考訳(メタデータ) (2021-10-18T15:24:32Z) - VidLanKD: Improving Language Understanding via Video-Distilled Knowledge
Transfer [76.3906723777229]
言語理解を改善するためのビデオ言語知識蒸留法VidLanKDを提案する。
我々は、ビデオテキストデータセット上でマルチモーダル教師モデルを訓練し、その知識をテキストデータセットを用いて学生言語モデルに伝達する。
我々の実験では、VidLanKDはテキストのみの言語モデルや発声モデルよりも一貫した改善を実現している。
論文 参考訳(メタデータ) (2021-07-06T15:41:32Z) - Role of Artificial Intelligence in Detection of Hateful Speech for
Hinglish Data on Social Media [1.8899300124593648]
ヒンディー語と英語のコードミックスデータ(Hinglish)の流行は、世界中の都市人口のほとんどで増加しています。
ほとんどのソーシャルネットワークプラットフォームが展開するヘイトスピーチ検出アルゴリズムは、これらのコード混合言語に投稿された不快で虐待的なコンテンツをフィルタリングできない。
非構造化コードミックスHinglish言語の効率的な検出方法を提案する。
論文 参考訳(メタデータ) (2021-05-11T10:02:28Z) - Indic-Transformers: An Analysis of Transformer Language Models for
Indian Languages [0.8155575318208631]
Transformerアーキテクチャに基づく言語モデルは、幅広いNLPタスクにおいて最先端のパフォーマンスを達成した。
しかしながら、このパフォーマンスは通常、英語、フランス語、スペイン語、ドイツ語などの高リソース言語でテストされ、報告される。
一方、インドの言語はそのようなベンチマークでは表現されていない。
論文 参考訳(メタデータ) (2020-11-04T14:43:43Z) - Abstractive Summarization of Spoken and Written Instructions with BERT [66.14755043607776]
本稿では,BERTSumモデルの最初の対話型言語への応用について述べる。
我々は多種多様な話題にまたがるナレーションビデオの抽象要約を生成する。
我々は、これをインテリジェントな仮想アシスタントの機能として統合し、要求に応じて文字と音声の両方の指導内容の要約を可能にすることを想定する。
論文 参考訳(メタデータ) (2020-08-21T20:59:34Z) - Kungfupanda at SemEval-2020 Task 12: BERT-Based Multi-Task Learning for
Offensive Language Detection [55.445023584632175]
我々は,マルチタスク学習とBERTモデルを組み合わせた攻撃的言語検出システムを構築した。
我々のモデルは、英語のサブタスクAで91.51%のF1スコアを獲得し、これは第1位に匹敵する。
論文 参考訳(メタデータ) (2020-04-28T11:27:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。