論文の概要: Prompt Engineering Using GPT for Word-Level Code-Mixed Language Identification in Low-Resource Dravidian Languages
- arxiv url: http://arxiv.org/abs/2411.04025v1
- Date: Wed, 06 Nov 2024 16:20:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:23:42.470438
- Title: Prompt Engineering Using GPT for Word-Level Code-Mixed Language Identification in Low-Resource Dravidian Languages
- Title(参考訳): 低リソースドラビディアン言語における単語レベル符号混合言語識別のためのGPTを用いたプロンプトエンジニアリング
- Authors: Aniket Deroy, Subhankar Maity,
- Abstract要約: インドのような多言語社会では、テキストはしばしばコードミキシングを示し、異なる言語レベルで現地の言語と英語をブレンドする。
本稿では,Dravidian言語における単語レベルのLI課題への対処を目的とした,共有タスクのプロンプトベース手法を提案する。
本研究では,GPT-3.5 Turboを用いて,大言語モデルが単語を正しいカテゴリに分類できるかどうかを検証した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Language Identification (LI) is crucial for various natural language processing tasks, serving as a foundational step in applications such as sentiment analysis, machine translation, and information retrieval. In multilingual societies like India, particularly among the youth engaging on social media, text often exhibits code-mixing, blending local languages with English at different linguistic levels. This phenomenon presents formidable challenges for LI systems, especially when languages intermingle within single words. Dravidian languages, prevalent in southern India, possess rich morphological structures yet suffer from under-representation in digital platforms, leading to the adoption of Roman or hybrid scripts for communication. This paper introduces a prompt based method for a shared task aimed at addressing word-level LI challenges in Dravidian languages. In this work, we leveraged GPT-3.5 Turbo to understand whether the large language models is able to correctly classify words into correct categories. Our findings show that the Kannada model consistently outperformed the Tamil model across most metrics, indicating a higher accuracy and reliability in identifying and categorizing Kannada language instances. In contrast, the Tamil model showed moderate performance, particularly needing improvement in precision and recall.
- Abstract(参考訳): 言語識別(Language Identification, LI)は、感情分析、機械翻訳、情報検索といった様々な自然言語処理タスクにおいて、基礎的なステップとして機能する。
インドのような多言語社会、特にソーシャルメディアに携わる若者の間では、テキストはしばしばコードミキシングを示し、異なる言語レベルで現地の言語と英語をブレンドする。
この現象は、特に言語が単一の単語で混在している場合、LIシステムにとって重大な課題となる。
インド南部で広く普及しているドラヴィダ語は、豊富な形態的構造を持っているが、デジタルプラットフォームでは表現不足に悩まされており、ローマ文字やハイブリッド文字が採用されている。
本稿では,Dravidian言語における単語レベルのLI課題への対処を目的とした,共有タスクのプロンプトベース手法を提案する。
本研究では,GPT-3.5 Turboを用いて,大言語モデルが単語を正しいカテゴリに分類できるかどうかを検証した。
以上の結果から,カナダモデルの精度と信頼性が向上し,カナダ言語のインスタンスを識別・分類する上で,カナダモデルの方が常にタミルモデルよりも優れていたことが示唆された。
対照的に、タミルモデルは中程度の性能を示し、特に精度とリコールの改善を必要とした。
関連論文リスト
- Prompting Towards Alleviating Code-Switched Data Scarcity in Under-Resourced Languages with GPT as a Pivot [1.3741556944830366]
本研究により, GPT 3.5は, 英語, よるば, 英語のコード変更文を生成することができた。
ヨルバのような非ラテン文字を用いた言語の文の質は、アフリカーンス英語の成功率と比較してかなり低い。
本稿では,GPTを用いた合成コードスイッチングデータの多様性向上のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-26T07:44:44Z) - cantnlp@LT-EDI-2024: Automatic Detection of Anti-LGBTQ+ Hate Speech in
Under-resourced Languages [0.0]
本稿では,LT-EDI-2024における共有タスクの一環として開発されたソーシャルメディアコメント検出システムにおけるホモフォビア/トランスフォビアについて述べる。
10の言語条件に対するマルチクラス分類モデルを開発するために,トランスフォーマーに基づくアプローチを採用した。
我々は,ソーシャルメディア言語の言語的現実を反映させるために,ドメイン適応中にスクリプト変更言語データの合成および有機的インスタンスを導入した。
論文 参考訳(メタデータ) (2024-01-28T21:58:04Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Script Normalization for Unconventional Writing of Under-Resourced
Languages in Bilingual Communities [36.578851892373365]
ソーシャルメディアは言語的に表現されていないコミュニティに、彼らの母国語でコンテンツを制作する素晴らしい機会を与えてきた。
本稿では、主にペルソ・アラビア文字で書かれたいくつかの言語に対するスクリプト正規化の問題に対処する。
各種ノイズレベルの合成データと変圧器モデルを用いて, この問題を効果的に再現できることを実証した。
論文 参考訳(メタデータ) (2023-05-25T18:18:42Z) - Romanization-based Large-scale Adaptation of Multilingual Language
Models [124.57923286144515]
大規模多言語事前学習言語モデル (mPLMs) は,NLPにおける多言語間移動のデファクトステートとなっている。
我々は、mPLMをローマン化および非ロマン化した14の低リソース言語コーパスに適用するためのデータとパラメータ効率の戦略を多数検討し、比較した。
以上の結果から, UROMAN をベースとしたトランスリテラルは,多くの言語で高い性能を達成できることがわかった。
論文 参考訳(メタデータ) (2023-04-18T09:58:34Z) - Prompting Multilingual Large Language Models to Generate Code-Mixed
Texts: The Case of South East Asian Languages [47.78634360870564]
東南アジア7言語(SEA)のコードミキシングデータ生成のための多言語モデルの構築について検討する。
BLOOMZのような多言語学習モデルでは、異なる言語からフレーズや節でテキストを生成できないことが判明した。
ChatGPTは、コード混合テキストの生成において矛盾する機能を示しており、そのパフォーマンスはプロンプトテンプレートと言語ペアリングによって異なる。
論文 参考訳(メタデータ) (2023-03-23T18:16:30Z) - CLSE: Corpus of Linguistically Significant Entities [58.29901964387952]
専門家が注釈を付けた言語学的に重要なエンティティ(CLSE)のコーパスをリリースする。
CLSEは74種類のセマンティックタイプをカバーし、航空券売機からビデオゲームまで様々なアプリケーションをサポートする。
言語的に代表されるNLG評価ベンチマークを,フランス語,マラティー語,ロシア語の3言語で作成する。
論文 参考訳(メタデータ) (2022-11-04T12:56:12Z) - A Comprehensive Understanding of Code-mixed Language Semantics using
Hierarchical Transformer [28.3684494647968]
コード混合言語のセマンティクスを学習するための階層型トランスフォーマーベースアーキテクチャ(HIT)を提案する。
提案手法を17のデータセット上で6つのインド語と9つのNLPタスクで評価した。
論文 参考訳(メタデータ) (2022-04-27T07:50:18Z) - Multilingual Text Classification for Dravidian Languages [4.264592074410622]
そこで我々はDravidian言語のための多言語テキスト分類フレームワークを提案する。
一方、フレームワークはLaBSE事前訓練モデルをベースモデルとして使用した。
一方,モデルが言語間の相関を十分に認識・活用できないという問題を考慮し,さらに言語固有の表現モジュールを提案する。
論文 参考訳(メタデータ) (2021-12-03T04:26:49Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
我々は,XLMファインタニングの入力として言語間データを利用する拡張融合法を提案する。
推論中は、ターゲット言語で入力されたテキストとソース言語の翻訳に基づいて予測を行う。
この問題に対処するため,対象言語における翻訳テキストのための自動生成ソフト擬似ラベルに基づくモデル学習のためのKL分割自己学習損失を提案する。
論文 参考訳(メタデータ) (2020-09-10T22:42:15Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。