Neural Moving Horizon Estimation for Robust Flight Control
- URL: http://arxiv.org/abs/2206.10397v3
- Date: Thu, 23 Jun 2022 04:31:33 GMT
- Title: Neural Moving Horizon Estimation for Robust Flight Control
- Authors: Bingheng Wang, Zhengtian Ma, Shupeng Lai, and Lin Zhao
- Abstract summary: Estimating and reacting to external disturbances is crucial for robust flight control of quadrotors.
We propose a neural moving horizon estimator (NeuroMHE) that can automatically tune the MHE parameters modeled by a neural network.
NeuroMHE outperforms the state-of-the-art estimator with force estimation error reductions of up to 49.4%.
- Score: 6.023276947115864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimating and reacting to external disturbances is crucial for robust flight
control of quadrotors. Existing estimators typically require significant tuning
for a specific flight scenario or training with extensive real-world data to
achieve satisfactory performance. In this paper, we propose a neural moving
horizon estimator (NeuroMHE) that can automatically tune the MHE parameters
modeled by a neural network and adapt to different flight scenarios. We achieve
this by deriving the analytical gradient of the MHE estimates with respect to
the tunable parameters, enabling a seamless embedding of MHE as a layer into
the neural network for highly effective learning. Most interestingly, we show
that the gradient can be solved efficiently from a Kalman filter in a recursive
form. Moreover, we develop a model-based policy gradient algorithm to train
NeuroMHE directly from the trajectory tracking error without the need for the
ground-truth disturbance. The effectiveness of NeuroMHE is verified extensively
via both simulations and physical experiments on a quadrotor in various
challenging flights. Notably, NeuroMHE outperforms the state-of-the-art
estimator with force estimation error reductions of up to 49.4% by using only a
2.5% amount of parameters. The proposed method is general and can be applied to
robust adaptive control for other robotic systems.
Related papers
- Graph Adapter of EEG Foundation Models for Parameter Efficient Fine Tuning [1.8946099300030472]
EEG-GraphAdapter (EGA) is a parameter-efficient fine-tuning (PEFT) approach to address these challenges.
EGA is integrated into pre-trained temporal backbone models as a GNN-based module.
It improves performance by up to 16.1% in the F1-score compared with the backbone BENDR model.
arXiv Detail & Related papers (2024-11-25T07:30:52Z) - Neuromorphic Attitude Estimation and Control [17.895261339368815]
This research presents the first neuromorphic control system using a spiking neural network (SNN)
We apply this method to low-level attitude estimation and control for a quadrotor, deploying the SNN on a tiny Crazyflie.
Our work shows the feasibility of performing neuromorphic end-to-end control, laying the basis for highly energy-efficient and low-latency neuromorphic autopilots.
arXiv Detail & Related papers (2024-11-21T08:54:45Z) - A Neuromorphic Approach to Obstacle Avoidance in Robot Manipulation [16.696524554516294]
We develop a neuromorphic approach to obstacle avoidance on a camera-equipped manipulator.
Our approach adapts high-level trajectory plans with reactive maneuvers by processing emulated event data in a convolutional SNN.
Our results motivate incorporating SNN learning, utilizing neuromorphic processors, and further exploring the potential of neuromorphic methods.
arXiv Detail & Related papers (2024-04-08T20:42:10Z) - Sim-to-Real Transfer of Adaptive Control Parameters for AUV
Stabilization under Current Disturbance [1.099532646524593]
This paper presents a novel approach, merging the Maximum Entropy Deep Reinforcement Learning framework with a classic model-based control architecture, to formulate an adaptive controller.
Within this framework, we introduce a Sim-to-Real transfer strategy comprising the following components: a bio-inspired experience replay mechanism, an enhanced domain randomisation technique, and an evaluation protocol executed on a physical platform.
Our experimental assessments demonstrate that this method effectively learns proficient policies from suboptimal simulated models of the AUV, resulting in control performance 3 times higher when transferred to a real-world vehicle.
arXiv Detail & Related papers (2023-10-17T08:46:56Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
We introduce lower bounds to the linearized Laplace approximation of the marginal likelihood.
These bounds are amenable togradient-based optimization and allow to trade off estimation accuracy against computational complexity.
arXiv Detail & Related papers (2023-06-06T19:02:57Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - RAMP-Net: A Robust Adaptive MPC for Quadrotors via Physics-informed
Neural Network [6.309365332210523]
We propose a Robust Adaptive MPC framework via PINNs (RAMP-Net), which uses a neural network trained partly from simple ODEs and partly from data.
We report 7.8% to 43.2% and 8.04% to 61.5% reduction in tracking errors for speeds ranging from 0.5 to 1.75 m/s compared to two SOTA regression based MPC methods.
arXiv Detail & Related papers (2022-09-19T16:11:51Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Differentially private training of neural networks with Langevin
dynamics forcalibrated predictive uncertainty [58.730520380312676]
We show that differentially private gradient descent (DP-SGD) can yield poorly calibrated, overconfident deep learning models.
This represents a serious issue for safety-critical applications, e.g. in medical diagnosis.
arXiv Detail & Related papers (2021-07-09T08:14:45Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
We propose a novel learning framework using neural mean-field (NMF) dynamics for inference and estimation problems.
Our framework can simultaneously learn the structure of the diffusion network and the evolution of node infection probabilities.
arXiv Detail & Related papers (2021-06-03T00:02:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.