論文の概要: Driving Digital Engineering Integration and Interoperability Through
Semantic Integration of Models with Ontologies
- arxiv url: http://arxiv.org/abs/2206.10454v1
- Date: Wed, 8 Jun 2022 14:58:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-27 01:35:11.729413
- Title: Driving Digital Engineering Integration and Interoperability Through
Semantic Integration of Models with Ontologies
- Title(参考訳): モデルとオントロジーのセマンティック統合によるディジタルエンジニアリング統合と相互運用性の推進
- Authors: Daniel Dunbar, Thomas Hagedorn, Mark Blackburn, John Dzielski, Steven
Hespelt, Benjamin Kruse, Dinesh Verma, Zhongyuan Yu
- Abstract要約: 本稿では,Digital Engineering Framework for Integrationを紹介します。
DEFII、SWTをエンジニアリング設計および分析タスクに組み込む。
このフレームワークは、オントロジーに準拠したデータと対話するための3つの表記インターフェイスを含んでいる。
フレームワークの使用は、ツールに依存しない、プロジェクト全体、システム、ミッションにまたがる真実の信頼できる情報源をもたらす。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Engineered solutions are becoming more complex and multi-disciplinary in
nature. This evolution requires new techniques to enhance design and analysis
tasks that incorporate data integration and interoperability across various
engineering tool suites spanning multiple domains at different abstraction
levels. Semantic Web Technologies (SWT) offer data integration and
interoperability benefits as well as other opportunities to enhance reasoning
across knowledge represented in multiple disparate models. This paper
introduces the Digital Engineering Framework for Integration and
Interoperability (DEFII) for incorporating SWT into engineering design and
analysis tasks. The framework includes three notional interfaces for
interacting with ontology-aligned data. It also introduces a novel Model
Interface Specification Diagram (MISD) that provides a tool-agnostic model
representation enabled by SWT that exposes data stored for use by external
users through standards-based interfaces. Use of the framework results in a
tool-agnostic authoritative source of truth spanning the entire project,
system, or mission.
- Abstract(参考訳): エンジニアによるソリューションは、自然界においてより複雑で多分野に分かれている。
この進化には、さまざまな抽象化レベルで複数のドメインにまたがるさまざまなエンジニアリングツールスイート間のデータ統合と相互運用性を含む、設計と分析タスクを強化する新しい技術が必要です。
Semantic Web Technologies(SWT)は、データ統合と相互運用性の利点と、複数の異なるモデルに表される知識間の推論を強化する他の機会を提供する。
本稿では,SWTをエンジニアリング設計・解析タスクに組み込むためのDEFII(Digital Engineering Framework for Integration and Interoperability)を紹介する。
このフレームワークはオントロジーに準拠したデータと対話するための3つの表記インターフェイスを含んでいる。
また、SWTによって実現されたツールに依存しないモデル表現を提供する新しいモデルインターフェース仕様図(MISD)も導入されている。
フレームワークの使用は、ツールに依存しない、プロジェクト全体、システム、ミッションにまたがる真実の信頼できる情報源をもたらす。
関連論文リスト
- Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
本稿では,視覚に基づく制御ポリシを用いて,ロバストな閉ループ性能を実現するために必要な最小限のデータ要件とアーキテクチャ適応について検討する。
この知見はFlex (Fly-lexically) で合成され,VLM(Vision Language Models) をフリーズしたパッチワイド特徴抽出器として利用するフレームワークである。
本研究では,本手法が4段階のフライ・トゥ・ターゲットタスクにおいて有効であることを示す。
論文 参考訳(メタデータ) (2024-10-16T19:59:31Z) - Bridging Design Gaps: A Parametric Data Completion Approach With Graph Guided Diffusion Models [9.900586490845694]
本研究では, グラフ注意ネットワークと表層拡散モデルを利用して, 工学設計におけるパラメトリックデータの欠落を解消する生成的計算モデルを提案する。
提案手法は従来の手法,例えばMissForest, HotDeck, PPCA, TabCSDI よりも精度と多様性に優れていた。
グラフモデルは、設計問題の鍵となるアセンブリグラフから複雑なパラメトリック相互依存性を正確にキャプチャし、インプットするのに役立つ。
論文 参考訳(メタデータ) (2024-06-17T16:03:17Z) - MergeNet: Knowledge Migration across Heterogeneous Models, Tasks, and Modalities [72.68829963458408]
異種モデルのパラメータ空間のギャップを埋めることを学ぶMergeNetを提案する。
MergeNetの中核となるメカニズムはパラメータアダプタにあり、ソースモデルの低ランクパラメータをクエリすることで動作する。
MergeNetは両方のモデルと共に学習され、我々のフレームワークは、現在のステージに関する知識を動的に転送し、適応することができます。
論文 参考訳(メタデータ) (2024-04-20T08:34:39Z) - Interfacing Foundation Models' Embeddings [131.0352288172788]
ファウンデーションモデルの埋め込みと、モダリティと粒度にまたがる統合イメージとデータセットレベルの理解を整合させる汎用インターフェースであるFINDを提案する。
インターリーブド埋め込み空間を考慮したFIND-Benchでは,インターリーブドセグメンテーションと検索のためのCOCOデータセットに新たなトレーニングと評価アノテーションを導入している。
論文 参考訳(メタデータ) (2023-12-12T18:58:02Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
マルチモーダルエンティティリンクタスクは、マルチモーダル知識グラフへの曖昧な言及を解決することを目的としている。
MELタスクを解決するための新しいMulti-Grained Multimodal InteraCtion Network $textbf(MIMIC)$ frameworkを提案する。
論文 参考訳(メタデータ) (2023-07-19T02:11:19Z) - Interactive Design by Integrating a Large Pre-Trained Language Model and
Building Information Modeling [0.0]
本研究では,生成型人工知能(AI)モデル,特にOpenAIの生成型事前学習型トランスフォーマ(GPT)シリーズの可能性について検討する。
本研究は,建築家とAIシステム間の動的協調を促進するために,最先端言語モデルの有効性を示すものである。
論文 参考訳(メタデータ) (2023-06-25T08:18:03Z) - Using Textual Interface to Align External Knowledge for End-to-End
Task-Oriented Dialogue Systems [53.38517204698343]
本稿では,外部知識の整合化と冗長なプロセスの排除にテキストインタフェースを用いた新しいパラダイムを提案する。
我々は、MultiWOZ-Remakeを用いて、MultiWOZデータベース用に構築されたインタラクティブテキストインタフェースを含む、我々のパラダイムを実演する。
論文 参考訳(メタデータ) (2023-05-23T05:48:21Z) - Tool interoperability for model-based systems engineering [0.7182467727359453]
我々は、仕様、合成、検証などの機能を提供する、それぞれの専門分野における最先端のツールについて論じる。
Arrowheadフレームワーク上に構築されたAnalytics as a Serviceは、これらのツールを接続し、相互運用可能にします。
論文 参考訳(メタデータ) (2023-02-07T14:45:04Z) - Universal Information Extraction as Unified Semantic Matching [54.19974454019611]
情報抽出を,異なるタスクやスキーマで共有される構造化と概念化という,2つの能力に分割する。
このパラダイムに基づいて、統一意味マッチングフレームワークを用いて様々なIEタスクを普遍的にモデル化することを提案する。
このように、USMはスキーマと入力テキストを共同でエンコードし、サブ構造を一様に並列に抽出し、必要に応じてターゲット構造を制御できる。
論文 参考訳(メタデータ) (2023-01-09T11:51:31Z) - SINGA-Easy: An Easy-to-Use Framework for MultiModal Analysis [18.084628500554462]
SINGA-Easyは、トレーニング段階での分散ハイパーパラメータチューニング、推論段階での動的計算コスト制御、モデル説明によるマルチメディアコンテンツとの直感的なユーザインタラクションを提供する新しいディープラーニングフレームワークである。
マルチモーダリティデータ解析アプリケーションのトレーニングと展開に関する実験により,このフレームワークは動的推論負荷に適応可能であることが示された。
論文 参考訳(メタデータ) (2021-08-03T08:39:54Z) - Modular approach to data preprocessing in ALOHA and application to a
smart industry use case [0.0]
データ前処理と変換パイプラインをサポートするために、ALOHAツールフローに統合されたモジュラーアプローチに対処する。
提案手法の有効性を示すために,キーワードスポッティングのユースケースに関する実験結果を示す。
論文 参考訳(メタデータ) (2021-02-02T06:48:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。