How viable is quantum annealing for solving linear algebra problems?
- URL: http://arxiv.org/abs/2206.10576v1
- Date: Tue, 21 Jun 2022 17:55:13 GMT
- Title: How viable is quantum annealing for solving linear algebra problems?
- Authors: Ajinkya Borle, Samuel J. Lomonaco
- Abstract summary: We evaluate the meta-heuristic for various problems in linear algebra using quantum annealers.
We use simulations based on the adiabatic principle to provide new insights for previously observed phenomena.
We propose a hybrid approach which uses a quantum annealer to provide a initial guess of the solution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing popularity of quantum computing and in particular quantum
annealing, there has been growing research to evaluate the meta-heuristic for
various problems in linear algebra: from linear least squares to matrix and
tensor factorization. At the core of this effort is to evaluate quantum
annealing for solving linear least squares and linear systems of equations. In
this work, we focus on the viability of using quantum annealing for solving
these problems. We use simulations based on the adiabatic principle to provide
new insights for previously observed phenomena with the D-wave machines, such
as quantum annealing being robust against ill-conditioned systems of equations
and scaling quite well against the number of rows in a system. We then propose
a hybrid approach which uses a quantum annealer to provide a initial guess of
the solution $x_0$, which would then be iteratively improved with classical
fixed point iteration methods.
Related papers
- Explicit near-optimal quantum algorithm for solving the advection-diffusion equation [0.0]
An explicit quantum algorithm is proposed for modeling dissipative initial-value problems.
We propose a quantum circuit based on a simple coordinate transformation that turns the dependence on the summation index into a trigonometric function.
The proposed algorithm can be used for modeling a wide class of nonunitary initial-value problems.
arXiv Detail & Related papers (2025-01-19T19:03:29Z) - Shadow Quantum Linear Solver: A Resource Efficient Quantum Algorithm for Linear Systems of Equations [0.8437187555622164]
We present an original algorithmic procedure to solve the Quantum Linear System Problem (QLSP) on a digital quantum device.
The result is a quantum algorithm avoiding the need for large controlled unitaries, requiring a number of qubits that is logarithmic in the system size.
We apply this to a physical problem of practical relevance, by leveraging decomposition theorems from linear algebra to solve the discretized Laplace Equation in a 2D grid.
arXiv Detail & Related papers (2024-09-13T15:46:32Z) - A Catalyst Framework for the Quantum Linear System Problem via the Proximal Point Algorithm [9.804179673817574]
We propose a new quantum algorithm for the quantum linear system problem (QLSP) inspired by the classical proximal point algorithm (PPA)
Our proposed method can be viewed as a meta-algorithm that allows inverting a modified matrix via an existing texttimattQLSP_solver.
By carefully choosing the step size $eta$, the proposed algorithm can effectively precondition the linear system to mitigate the dependence on condition numbers that hindered the applicability of previous approaches.
arXiv Detail & Related papers (2024-06-19T23:15:35Z) - Hybrid quantum-classical and quantum-inspired classical algorithms for
solving banded circulant linear systems [0.8192907805418583]
We present an efficient algorithm based on convex optimization of combinations of quantum states to solve for banded circulant linear systems.
By decomposing banded circulant matrices into cyclic permutations, our approach produces approximate solutions to such systems with a combination of quantum states linear to $K$.
We validate our methods with classical simulations and actual IBM quantum computer implementation, showcasing their applicability for solving physical problems such as heat transfer.
arXiv Detail & Related papers (2023-09-20T16:27:16Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Depth analysis of variational quantum algorithms for heat equation [0.0]
We consider three approaches to solve the heat equation on a quantum computer.
An exponential number of Pauli products in the Hamiltonian decomposition does not allow for the quantum speed up to be achieved.
The ansatz tree approach exploits an explicit form of the matrix what makes it possible to achieve an advantage over classical algorithms.
arXiv Detail & Related papers (2022-12-23T14:46:33Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Q-FW: A Hybrid Classical-Quantum Frank-Wolfe for Quadratic Binary
Optimization [44.96576908957141]
We present a hybrid classical-quantum framework based on the Frank-Wolfe algorithm, Q-FW, for solving quadratic, linear iterations problems on quantum computers.
arXiv Detail & Related papers (2022-03-23T18:00:03Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.