Quantum algorithms for matrix geometric means
- URL: http://arxiv.org/abs/2405.00673v1
- Date: Wed, 1 May 2024 17:58:11 GMT
- Title: Quantum algorithms for matrix geometric means
- Authors: Nana Liu, Qisheng Wang, Mark M. Wilde, Zhicheng Zhang,
- Abstract summary: We devise new quantum subroutines to prepare quantum unitary operators that embed the standard matrix geometric mean.
We present a new class of quantum learning algorithms called quantum geometric mean metric learning.
These quantum subroutines for matrix geometric means are also useful in other areas of quantum information.
- Score: 9.711068952909118
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Matrix geometric means between two positive definite matrices can be defined equivalently from distinct perspectives - as solutions to certain nonlinear systems of equations, as points along geodesics in Riemannian geometry, and as solutions to certain optimisation problems. This diversity already suggests the potential for varied applications, as well as acting as a bridge between different domains. Here we devise new quantum subroutines to efficiently prepare quantum unitary operators that embed the standard matrix geometric mean and its generalisations called the weighted matrix geometric mean. This enables the construction of solutions to the algebraic Riccati equation, which is an important class of nonlinear systems of equations that appears in machine learning, optimal control, estimation, and filtering. Using these subroutines, we present a new class of quantum learning algorithms called quantum geometric mean metric learning. This has applications in efficiently finding the best distance measure and solving classification problems in the weakly supervised limit and for anomaly detection, for both classical and quantum problems. We also show how our method can be generalised to a particular p^th-order system of nonlinear equations. These quantum subroutines for matrix geometric means are also useful in other areas of quantum information. For example, we show how to use them in the estimation of geometric Renyi relative entropies and the Uhlmann fidelity by means of the Fuchs-Caves observable. In particular, our quantum algorithms for estimating the Uhlmann and Matsumoto fidelities have optimal dependence on the precision. Finally, we provide a BQP-complete problem based on matrix geometric means that can be solved by our subroutines, thus characterising their computational capability.
Related papers
- Hybrid quantum-classical and quantum-inspired classical algorithms for
solving banded circulant linear systems [0.8192907805418583]
We present an efficient algorithm based on convex optimization of combinations of quantum states to solve for banded circulant linear systems.
By decomposing banded circulant matrices into cyclic permutations, our approach produces approximate solutions to such systems with a combination of quantum states linear to $K$.
We validate our methods with classical simulations and actual IBM quantum computer implementation, showcasing their applicability for solving physical problems such as heat transfer.
arXiv Detail & Related papers (2023-09-20T16:27:16Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - How viable is quantum annealing for solving linear algebra problems? [0.0]
We evaluate the meta-heuristic for various problems in linear algebra using quantum annealers.
We use simulations based on the adiabatic principle to provide new insights for previously observed phenomena.
We propose a hybrid approach which uses a quantum annealer to provide a initial guess of the solution.
arXiv Detail & Related papers (2022-06-21T17:55:13Z) - Quantum gradient descent algorithms for nonequilibrium steady states and
linear algebraic systems [0.17188280334580192]
gradient descent is a key ingredient in variational quantum algorithms and machine learning tasks.
We present approaches to simulate the nonequilibrium steady states of Markovian open quantum many-body systems.
We adapt the quantum gradient descent algorithm to solve linear algebra problems including linear systems of equations and matrix-vector multiplications.
arXiv Detail & Related papers (2022-04-15T01:20:33Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
We propose quantum algorithms for matrix operations using the "Sender-Receiver" model.
These quantum protocols can be used as subroutines in other quantum schemes.
arXiv Detail & Related papers (2022-02-10T08:12:20Z) - A Quantum Computer Amenable Sparse Matrix Equation Solver [0.0]
We study problems involving the solution of matrix equations, for which there currently exists no efficient, general quantum procedure.
We develop a generalization of the Harrow/Hassidim/Lloyd algorithm by providing an alternative unitary for eigenphase estimation.
This unitary has the advantage of being well defined for any arbitrary matrix equation, thereby allowing the solution procedure to be directly implemented on quantum hardware.
arXiv Detail & Related papers (2021-12-05T15:42:32Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression.
We argue that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise.
arXiv Detail & Related papers (2020-11-09T01:13:07Z) - Riemannian geometry and automatic differentiation for optimization
problems of quantum physics and quantum technologies [0.0]
We show that a new approach to optimization with constraints can be applied to complex quantum systems.
The developed approach together with the provided open source software can be applied to the optimal control of noisy quantum systems.
arXiv Detail & Related papers (2020-07-02T17:53:01Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
We review and extend the application of deep learning to quantum geometric control problems.
We demonstrate enhancements in time-optimal control in the context of quantum circuit synthesis problems.
Our results are of interest to researchers in quantum control and quantum information theory seeking to combine machine learning and geometric techniques for time-optimal control problems.
arXiv Detail & Related papers (2020-06-19T19:12:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.