Quantum-Enhanced Selection Operators for Evolutionary Algorithms
- URL: http://arxiv.org/abs/2206.10743v1
- Date: Tue, 21 Jun 2022 21:36:39 GMT
- Title: Quantum-Enhanced Selection Operators for Evolutionary Algorithms
- Authors: David Von Dollen, Sheir Yarkoni, Daniel Weimer, Florian Neukart,
Thomas B\"ack
- Abstract summary: We study results obtained from using quantum-enhanced operators within the selection mechanism of a genetic algorithm.
We benchmark these quantum-enhanced algorithms against classical algorithms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Genetic algorithms have unique properties which are useful when applied to
black box optimization. Using selection, crossover, and mutation operators,
candidate solutions may be obtained without the need to calculate a gradient.
In this work, we study results obtained from using quantum-enhanced operators
within the selection mechanism of a genetic algorithm. Our approach frames the
selection process as a minimization of a binary quadratic model with which we
encode fitness and distance between members of a population, and we leverage a
quantum annealing system to sample low energy solutions for the selection
mechanism. We benchmark these quantum-enhanced algorithms against classical
algorithms over various black-box objective functions, including the OneMax
function, and functions from the IOHProfiler library for black-box
optimization. We observe a performance gain in average number of generations to
convergence for the quantum-enhanced elitist selection operator in comparison
to classical on the OneMax function. We also find that the quantum-enhanced
selection operator with non-elitist selection outperform benchmarks on
functions with fitness perturbation from the IOHProfiler library. Additionally,
we find that in the case of elitist selection, the quantum-enhanced operators
outperform classical benchmarks on functions with varying degrees of dummy
variables and neutrality.
Related papers
- Optimizing Unitary Coupled Cluster Wave Functions on Quantum Hardware: Error Bound and Resource-Efficient Optimizer [0.0]
We study the projective quantum eigensolver (PQE) approach to optimizing unitary coupled cluster wave functions on quantum hardware.
The algorithm uses projections of the Schr"odinger equation to efficiently bring the trial state closer to an eigenstate of the Hamiltonian.
We present numerical evidence of superiority over both the optimization introduced in arXiv:2102.00345 and VQE optimized using the Broyden Fletcher Goldfarb Shanno (BFGS) method.
arXiv Detail & Related papers (2024-10-19T15:03:59Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - Quantum vs classical genetic algorithms: A numerical comparison shows
faster convergence [0.0]
We show that some quantum variants outperform all classical ones in convergence speed towards a near-to-optimal result.
If this advantage holds for larger systems, quantum genetic algorithms would provide a new tool to address optimization problems with quantum computers.
arXiv Detail & Related papers (2022-07-19T13:07:44Z) - Variational quantum algorithm for unconstrained black box binary
optimization: Application to feature selection [1.9182522142368683]
We introduce a variational quantum algorithm to solve unconstrained black box binary problems.
This is in contrast to the typical setting of quantum algorithms for optimization.
We show that the quantum method produces competitive and in certain aspects even better performance than traditional feature selection techniques.
arXiv Detail & Related papers (2022-05-06T07:02:15Z) - Quantum Approximate Optimization Algorithm Based Maximum Likelihood
Detection [80.28858481461418]
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices.
arXiv Detail & Related papers (2021-07-11T10:56:24Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - GEO: Enhancing Combinatorial Optimization with Classical and Quantum
Generative Models [62.997667081978825]
We introduce a new framework that leverages machine learning models known as generative models to solve optimization problems.
We focus on a quantum-inspired version of GEO relying on tensor-network Born machines.
We show its superior performance when the goal is to find the best minimum given a fixed budget for the number of function calls.
arXiv Detail & Related papers (2021-01-15T18:18:38Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Classical Optimizers for Noisy Intermediate-Scale Quantum Devices [1.43494686131174]
We present a collection of tunings tuned for usage on Noisy Intermediate-Scale Quantum (NISQ) devices.
We analyze the efficiency and effectiveness of different minimizes in a VQE case study.
While most results to date concentrated on tuning the quantum VQE circuit, we show that, in the presence of quantum noise, the classical minimizer step needs to be carefully chosen to obtain correct results.
arXiv Detail & Related papers (2020-04-06T21:31:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.