Agent-based Graph Neural Networks
- URL: http://arxiv.org/abs/2206.11010v1
- Date: Wed, 22 Jun 2022 12:15:36 GMT
- Title: Agent-based Graph Neural Networks
- Authors: Karolis Martinkus, P\'al Andr\'as Papp, Benedikt Schesch, Roger
Wattenhofer
- Abstract summary: We present a novel graph neural network we call AgentNet.
In AgentNet, some trained textitneural agents intelligently walk the graph, and then collectively decide on the output.
We show that the agents can learn to systematically explore their neighborhood and that AgentNet can distinguish some structures that are even indistinguishable by 3-WL.
- Score: 9.615742794292943
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel graph neural network we call AgentNet, which is designed
specifically for graph-level tasks. AgentNet is inspired by sublinear
algorithms, featuring a computational complexity that is independent of the
graph size. The architecture of AgentNet differs fundamentally from the
architectures of known graph neural networks. In AgentNet, some trained
\textit{neural agents} intelligently walk the graph, and then collectively
decide on the output. We provide an extensive theoretical analysis of AgentNet:
We show that the agents can learn to systematically explore their neighborhood
and that AgentNet can distinguish some structures that are even
indistinguishable by 3-WL. Moreover, AgentNet is able to separate any two
graphs which are sufficiently different in terms of subgraphs. We confirm these
theoretical results with synthetic experiments on hard-to-distinguish graphs
and real-world graph classification tasks. In both cases, we compare favorably
not only to standard GNNs but also to computationally more expensive GNN
extensions.
Related papers
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)
This framework provides a standardized setting to evaluate GNNs across diverse datasets.
We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Transferability of Graph Neural Networks using Graphon and Sampling Theories [0.0]
Graph neural networks (GNNs) have become powerful tools for processing graph-based information in various domains.
A desirable property of GNNs is transferability, where a trained network can swap in information from a different graph without retraining and retain its accuracy.
We contribute to the application of graphons to GNNs by presenting an explicit two-layer graphon neural network (WNN) architecture.
arXiv Detail & Related papers (2023-07-25T02:11:41Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - Rethinking Graph Neural Network Search from Message-passing [120.62373472087651]
This paper proposes Graph Neural Architecture Search (GNAS) with novel-designed search space.
We design Graph Neural Architecture Paradigm (GAP) with tree-topology computation procedure and two types of fine-grained atomic operations.
Experiments show that our GNAS can search for better GNNs with multiple message-passing mechanisms and optimal message-passing depth.
arXiv Detail & Related papers (2021-03-26T06:10:41Z) - Multi-grained Semantics-aware Graph Neural Networks [13.720544777078642]
Graph Neural Networks (GNNs) are powerful techniques in representation learning for graphs.
This work proposes a unified model, AdamGNN, to interactively learn node and graph representations.
Experiments on 14 real-world graph datasets show that AdamGNN can significantly outperform 17 competing models on both node- and graph-wise tasks.
arXiv Detail & Related papers (2020-10-01T07:52:06Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z) - MathNet: Haar-Like Wavelet Multiresolution-Analysis for Graph
Representation and Learning [31.42901131602713]
We propose a framework for graph neural networks with multiresolution Haar-like wavelets, or MathNet, with interrelated convolution and pooling strategies.
The proposed MathNet outperforms various existing GNN models, especially on big data sets.
arXiv Detail & Related papers (2020-07-22T05:00:59Z) - Scaling Graph Neural Networks with Approximate PageRank [64.92311737049054]
We present the PPRGo model which utilizes an efficient approximation of information diffusion in GNNs.
In addition to being faster, PPRGo is inherently scalable, and can be trivially parallelized for large datasets like those found in industry settings.
We show that training PPRGo and predicting labels for all nodes in this graph takes under 2 minutes on a single machine, far outpacing other baselines on the same graph.
arXiv Detail & Related papers (2020-07-03T09:30:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.