Variational determination of arbitrarily many eigenpairs in one quantum
circuit
- URL: http://arxiv.org/abs/2206.11036v1
- Date: Wed, 22 Jun 2022 13:01:37 GMT
- Title: Variational determination of arbitrarily many eigenpairs in one quantum
circuit
- Authors: Guanglei Xu, Yi-Bin Guo, Xuan Li, Zong-Sheng Zhou, Hai-Jun Liao, T.
Xiang
- Abstract summary: A variational quantum eigensolver (VQE) was first introduced for computing ground states.
We propose a new algorithm to determine many low energy eigenstates simultaneously.
Our algorithm reduces significantly the complexity of circuits and the readout errors.
- Score: 8.118991737495524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The state-of-the-art quantum computing hardware has entered the noisy
intermediate-scale quantum (NISQ) era. Having been constrained by the limited
number of qubits and shallow circuit depth, NISQ devices have nevertheless
demonstrated the potential of applications on various subjects. One example is
the variational quantum eigensolver (VQE) that was first introduced for
computing ground states. Although VQE has now been extended to the study of
excited states, the algorithms previously proposed involve a recursive
optimization scheme which requires many extra operations with significantly
deeper quantum circuits to ensure the orthogonality of different trial states.
Here we propose a new algorithm to determine many low energy eigenstates
simultaneously. By introducing ancillary qubits to purify the trial states so
that they keep orthogonal to each other throughout the whole optimization
process, our algorithm allows these states to be efficiently computed in one
quantum circuit. Our algorithm reduces significantly the complexity of circuits
and the readout errors, and enables flexible post-processing on the
eigen-subspace from which the eigenpairs can be accurately determined. We
demonstrate this algorithm by applying it to the transverse Ising model. By
comparing the results obtained using this variational algorithm with the exact
ones, we find that the eigenvalues of the Hamiltonian converge quickly with the
increase of the circuit depth. The accuracies of the converged eigenvalues are
of the same order, which implies that the difference between any two
eigenvalues can be more accurately determined than the eigenvalues themselves.
Related papers
- Depth scaling of unstructured search via quantum approximate optimization [0.0]
Variational quantum algorithms have become the de facto model for current quantum computations.
One such problem is unstructured search which consists on finding a particular bit of string.
We trotterize a CTQW to recover a QAOA sequence, and employ recent advances on the theory of Trotter formulas to bound the query complexity.
arXiv Detail & Related papers (2024-03-22T18:00:03Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Taming Quantum Time Complexity [45.867051459785976]
We show how to achieve both exactness and thriftiness in the setting of time complexity.
We employ a novel approach to the design of quantum algorithms based on what we call transducers.
arXiv Detail & Related papers (2023-11-27T14:45:19Z) - Quantum simulation of excited states from parallel contracted quantum
eigensolvers [5.915403570478968]
We show that a ground-state contracted quantum eigensolver can be generalized to compute any number of quantum eigenstates simultaneously.
We introduce two excited-state CQEs that perform the excited-state calculation while inheriting many of the remarkable features of the original ground-state version of the algorithm.
arXiv Detail & Related papers (2023-11-08T23:52:31Z) - Variational quantum algorithms for scanning the complex spectrum of
non-Hermitian systems [0.0]
We propose a variational method for solving the non-Hermitian Hamiltonian on a quantum computer.
The energy is set as a parameter in the cost function and can be tuned to obtain the whole spectrum.
Our work suggests an avenue for solving non-Hermitian quantum many-body systems with variational quantum algorithms on near-term noisy quantum computers.
arXiv Detail & Related papers (2023-05-31T12:50:22Z) - TETRIS-ADAPT-VQE: An adaptive algorithm that yields shallower, denser
circuit ans\"atze [0.0]
We introduce an algorithm called TETRIS-ADAPT-VQE, which iteratively builds up variational ans"atze a few operators at a time.
It results in denser but significantly shallower circuits, without increasing the number of CNOT gates or variational parameters.
These improvements bring us closer to the goal of demonstrating a practical quantum advantage on quantum hardware.
arXiv Detail & Related papers (2022-09-21T18:00:02Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Quantum amplitude damping for solving homogeneous linear differential
equations: A noninterferometric algorithm [0.0]
This work proposes a novel approach by using the Quantum Amplitude Damping operation as a resource, in order to construct an efficient quantum algorithm for solving homogeneous LDEs.
We show that such an open quantum system-inspired circuitry allows for constructing the real exponential terms in the solution in a non-interferometric.
arXiv Detail & Related papers (2021-11-10T11:25:32Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.