General Univariate Estimation-of-Distribution Algorithms
- URL: http://arxiv.org/abs/2206.11198v1
- Date: Wed, 22 Jun 2022 16:32:04 GMT
- Title: General Univariate Estimation-of-Distribution Algorithms
- Authors: Benjamin Doerr, Marc Dufay
- Abstract summary: Our general model includes EDAs that are more efficient than the existing ones and these may not be difficult to find as we demonstrate for the OneMax and LeadingOnes benchmarks.
Our unified description of the existing algorithms allows a unified analysis of these; we demonstrate this by providing an analysis of genetic drift.
Our general model also includes EDAs that are more efficient than the existing ones and these may not be difficult to find as we demonstrate for the OneMax and LeadingOnes benchmarks.
- Score: 9.853329403413701
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a general formulation of a univariate estimation-of-distribution
algorithm (EDA). It naturally incorporates the three classic univariate EDAs
\emph{compact genetic algorithm}, \emph{univariate marginal distribution
algorithm} and \emph{population-based incremental learning} as well as the
\emph{max-min ant system} with iteration-best update. Our unified description
of the existing algorithms allows a unified analysis of these; we demonstrate
this by providing an analysis of genetic drift that immediately gives the
existing results proven separately for the four algorithms named above. Our
general model also includes EDAs that are more efficient than the existing ones
and these may not be difficult to find as we demonstrate for the OneMax and
LeadingOnes benchmarks.
Related papers
- Runtime Analysis of a Multi-Valued Compact Genetic Algorithm on Generalized OneMax [2.07180164747172]
We provide a first runtime analysis of a generalized OneMax function.
We show that the r-cGA solves this r-valued OneMax problem efficiently.
At the end of experiments, we state one conjecture related to the expected runtime of another variant of multi-valued OneMax function.
arXiv Detail & Related papers (2024-04-17T10:40:12Z) - Stochastic Methods in Variational Inequalities: Ergodicity, Bias and
Refinements [19.524063429548278]
Extragradient (SEG) and Gradient Descent Ascent (SGDA) are preeminent algorithms for min-max optimization and variational inequalities problems.
Our work endeavors to quantify and quantify the intrinsic structures intrinsic to these algorithms.
By recasting the constant step-size SEG/SGDA as time-homogeneous Markov Chains, we establish a first-of-its-kind Law of Large Numbers and a Central Limit Theorem.
arXiv Detail & Related papers (2023-06-28T18:50:07Z) - A General Recipe for the Analysis of Randomized Multi-Armed Bandit Algorithms [14.33758865948252]
We revisit two famous bandit algorithms, Minimum Empirical Divergence (MED) and Thompson Sampling (TS)
We prove that MED is optimal for all these models, but also provide a simple regret analysis of some TS algorithms for which the optimality is already known.
arXiv Detail & Related papers (2023-03-10T16:43:48Z) - An Application of a Multivariate Estimation of Distribution Algorithm to
Cancer Chemotherapy [59.40521061783166]
Chemotherapy treatment for cancer is a complex optimisation problem with a large number of interacting variables and constraints.
We show that the more sophisticated algorithm would yield better performance on a complex problem like this.
We hypothesise that this is caused by the more sophisticated algorithm being impeded by the large number of interactions in the problem.
arXiv Detail & Related papers (2022-05-17T15:28:46Z) - A hybrid estimation of distribution algorithm for joint stratification
and sample allocation [0.0]
We propose a hybrid estimation of distribution algorithm (HEDA) to solve the joint stratification and sample allocation problem.
EDAs are black-box optimization algorithms which can be used to estimate, build and sample probability models.
arXiv Detail & Related papers (2022-01-09T21:27:16Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
We study algorithms for estimating the statistical leverage scores of rectangular dense or sparse matrices of arbitrary rank.
Our approach is based on combining rank revealing methods with compositions of dense and sparse randomized dimensionality reduction transforms.
arXiv Detail & Related papers (2021-05-23T19:21:55Z) - Stochastic Hard Thresholding Algorithms for AUC Maximization [49.00683387735522]
We develop a hard thresholding algorithm for AUC in distributiond classification.
We conduct experiments to show the efficiency and effectiveness of the proposed algorithms.
arXiv Detail & Related papers (2020-11-04T16:49:29Z) - Train simultaneously, generalize better: Stability of gradient-based
minimax learners [12.691047660244331]
We show a key role in the performance of the trained minimax model under both convex concave and non-concave minimax settings.
We discuss several numerical results indicating the role of optimization algorithms in the generalization of learned minimax models.
arXiv Detail & Related papers (2020-10-23T17:44:43Z) - Efficient Computation of Expectations under Spanning Tree Distributions [67.71280539312536]
We propose unified algorithms for the important cases of first-order expectations and second-order expectations in edge-factored, non-projective spanning-tree models.
Our algorithms exploit a fundamental connection between gradients and expectations, which allows us to derive efficient algorithms.
arXiv Detail & Related papers (2020-08-29T14:58:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.