plingo: A system for probabilistic reasoning in clingo based on lpmln
- URL: http://arxiv.org/abs/2206.11515v4
- Date: Tue, 22 Oct 2024 00:06:40 GMT
- Title: plingo: A system for probabilistic reasoning in clingo based on lpmln
- Authors: Susana Hahn, Tomi Janhunen, Roland Kaminski, Javier Romero, Nicolas Rühling, Torsten Schaub,
- Abstract summary: We present plingo, an extension of the ASP system clingo with various probabilistic reasoning modes.
Plingo is centered upon LPMLN, a probabilistic extension of ASP based on a weight scheme from Markov Logic.
We evaluate plingo's performance empirically by comparing it to other probabilistic systems.
- Score: 2.7742922296398738
- License:
- Abstract: We present plingo, an extension of the ASP system clingo with various probabilistic reasoning modes. Plingo is centered upon LP^MLN, a probabilistic extension of ASP based on a weight scheme from Markov Logic. This choice is motivated by the fact that the core probabilistic reasoning modes can be mapped onto optimization problems and that LP^MLN may serve as a middle-ground formalism connecting to other probabilistic approaches. As a result, plingo offers three alternative frontends, for LP^MLN, P-log, and ProbLog. The corresponding input languages and reasoning modes are implemented by means of clingo's multi-shot and theory solving capabilities. The core of plingo amounts to a re-implementation of LP^MLN in terms of modern ASP technology, extended by an approximation technique based on a new method for answer set enumeration in the order of optimality. We evaluate plingo's performance empirically by comparing it to other probabilistic systems.
Related papers
- Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
We propose the Observation-Aware Spectral (OAS) estimation technique, which enables the POMDP parameters to be learned from samples collected using a belief-based policy.
We show the consistency of the OAS procedure, and we prove a regret guarantee of order $mathcalO(sqrtT log(T)$ for the proposed OAS-UCRL algorithm.
arXiv Detail & Related papers (2024-10-02T08:46:34Z) - Poisson Process for Bayesian Optimization [126.51200593377739]
We propose a ranking-based surrogate model based on the Poisson process and introduce an efficient BO framework, namely Poisson Process Bayesian Optimization (PoPBO)
Compared to the classic GP-BO method, our PoPBO has lower costs and better robustness to noise, which is verified by abundant experiments.
arXiv Detail & Related papers (2024-02-05T02:54:50Z) - Pseudo-Likelihood Inference [16.934708242852558]
Pseudo-Likelihood Inference (PLI) is a new method that brings neural approximation into ABC, making it competitive on challenging Bayesian system identification tasks.
PLI allows for optimizing neural posteriors via gradient descent, does not rely on summary statistics, and enables multiple observations as input.
The effectiveness of PLI is evaluated on four classical SBI benchmark tasks and on a highly dynamic physical system.
arXiv Detail & Related papers (2023-11-28T10:17:52Z) - Benchmarking PtO and PnO Methods in the Predictive Combinatorial Optimization Regime [59.27851754647913]
Predictive optimization is the precise modeling of many real-world applications, including energy cost-aware scheduling and budget allocation on advertising.
We develop a modular framework to benchmark 11 existing PtO/PnO methods on 8 problems, including a new industrial dataset for advertising.
Our study shows that PnO approaches are better than PtO on 7 out of 8 benchmarks, but there is no silver bullet found for the specific design choices of PnO.
arXiv Detail & Related papers (2023-11-13T13:19:34Z) - Scalable Neural-Probabilistic Answer Set Programming [18.136093815001423]
We introduce SLASH, a novel DPPL that consists of Neural-Probabilistic Predicates (NPPs) and a logic program, united via answer set programming (ASP)
We show how to prune the insignificantally insignificant parts of the (ground) program, speeding up reasoning without sacrificing the predictive performance.
We evaluate SLASH on a variety of different tasks, including the benchmark task of MNIST addition and Visual Question Answering (VQA)
arXiv Detail & Related papers (2023-06-14T09:45:29Z) - smProbLog: Stable Model Semantics in ProbLog for Probabilistic
Argumentation [19.46250467634934]
We show that the programs representing probabilistic argumentation frameworks do not satisfy a common assumption in probabilistic logic programming (PLP) semantics.
The second contribution is then a novel PLP semantics for programs where a choice of probabilistic facts does not uniquely determine the truth assignment of the logical atoms.
The third contribution is the implementation of a PLP system supporting this semantics: smProbLog.
arXiv Detail & Related papers (2023-04-03T10:59:25Z) - Declarative Probabilistic Logic Programming in Discrete-Continuous Domains [16.153683223016973]
We contribute the measure semantics together with the hybrid PLP language DC-ProbLog and its inference engine infinitesimal algebraic likelihood weighting (IALW)
We generalize the state of the art of PLP towards hybrid PLP in three different aspects: semantics, language and inference.
IALW is the first inference algorithm for hybrid probabilistic programming based on knowledge compilation.
arXiv Detail & Related papers (2023-02-21T13:50:38Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
We study BQO under distributional uncertainty in which the underlying probability distribution is unknown except for a limited set of its i.i.d. samples.
A standard BQO approach maximizes the Monte Carlo estimate of the true expected objective given the fixed sample set.
We propose a novel posterior sampling based algorithm, namely distributionally robust BQO (DRBQO) for this purpose.
arXiv Detail & Related papers (2020-01-19T12:00:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.