Probability-Consistent Preference Optimization for Enhanced LLM Reasoning
- URL: http://arxiv.org/abs/2505.23540v1
- Date: Thu, 29 May 2025 15:20:44 GMT
- Title: Probability-Consistent Preference Optimization for Enhanced LLM Reasoning
- Authors: Yunqiao Yang, Houxing Ren, Zimu Lu, Ke Wang, Weikang Shi, Aojun Zhou, Junting Pan, Mingjie Zhan, Hongsheng Li,
- Abstract summary: We propose a novel framework that establishes dual quantitative metrics for preference selection.<n>Our code is publicly available at https://github.com/YunqiaoYang/PCPO.
- Score: 36.74546743563837
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in preference optimization have demonstrated significant potential for improving mathematical reasoning capabilities in large language models (LLMs). While current approaches leverage high-quality pairwise preference data through outcome-based criteria like answer correctness or consistency, they fundamentally neglect the internal logical coherence of responses. To overcome this, we propose Probability-Consistent Preference Optimization (PCPO), a novel framework that establishes dual quantitative metrics for preference selection: (1) surface-level answer correctness and (2) intrinsic token-level probability consistency across responses. Extensive experiments show that our PCPO consistently outperforms existing outcome-only criterion approaches across a diverse range of LLMs and benchmarks. Our code is publicly available at https://github.com/YunqiaoYang/PCPO.
Related papers
- Stable Preference Optimization for LLMs: A Bilevel Approach Beyond Direct Preference Optimization [2.384797824772941]
We present a comprehensive analysis of DPO's dynamics from a probability evolution perspective.<n>We propose a theoretically grounded bilevel optimization framework that tightly integrate supervised fine-tuning with an enhanced DPO objective a.k.a. stable preference optimization.
arXiv Detail & Related papers (2025-07-10T12:57:39Z) - ConfPO: Exploiting Policy Model Confidence for Critical Token Selection in Preference Optimization [48.50761200321113]
We introduce ConfPO, a method for preference learning in Large Language Models (LLMs)<n>It identifies and optimize preference-critical tokens based solely on the training policy's confidence, without requiring any auxiliary models or compute.<n> Experimental results on challenging alignment benchmarks, including AlpacaEval 2 and Arena-Hard, demonstrate that ConfPO consistently outperforms uniform DAAs.
arXiv Detail & Related papers (2025-06-10T11:54:22Z) - Bounded Rationality for LLMs: Satisficing Alignment at Inference-Time [52.230936493691985]
We propose SITAlign, an inference framework that addresses the multifaceted nature of alignment by maximizing a primary objective while satisfying threshold-based constraints on secondary criteria.<n>We provide theoretical insights by deriving sub-optimality bounds of our satisficing based inference alignment approach.
arXiv Detail & Related papers (2025-05-29T17:56:05Z) - Accelerated Preference Optimization for Large Language Model Alignment [60.22606527763201]
Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal tool for aligning large language models (LLMs) with human preferences.
Direct Preference Optimization (DPO) formulates RLHF as a policy optimization problem without explicitly estimating the reward function.
We propose a general Accelerated Preference Optimization (APO) framework, which unifies many existing preference optimization algorithms.
arXiv Detail & Related papers (2024-10-08T18:51:01Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.<n>We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.<n>We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.<n>To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.<n>Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - $i$REPO: $i$mplicit Reward Pairwise Difference based Empirical Preference Optimization [12.266207199002604]
Large Language Models (LLM) can sometimes produce outputs that deviate from human expectations.
We propose a novel framework named $i$REPO, which utilizes implicit Reward pairwise difference regression for Empirical Preference Optimization.
We show that $i$REPO effectively achieves self-alignment using soft-label, self-generated responses and the logit of empirical AI annotators.
arXiv Detail & Related papers (2024-05-24T05:42:11Z) - Statistical Rejection Sampling Improves Preference Optimization [42.57245965632205]
We introduce a novel approach to source preference data from the target optimal policy using rejection sampling.
We also propose a unified framework that enhances the loss functions used in both Sequence Likelihood (SLiC) and Direct Preference Optimization (DPO) from a preference modeling standpoint.
arXiv Detail & Related papers (2023-09-13T01:07:25Z) - Bayesian Optimization with Conformal Prediction Sets [44.565812181545645]
Conformal prediction is an uncertainty quantification method with coverage guarantees even for misspecified models.
We propose conformal Bayesian optimization, which directs queries towards regions of search space where the model predictions have guaranteed validity.
In many cases we find that query coverage can be significantly improved without harming sample-efficiency.
arXiv Detail & Related papers (2022-10-22T17:01:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.