論文の概要: Affinity-Aware Graph Networks
- arxiv url: http://arxiv.org/abs/2206.11941v1
- Date: Thu, 23 Jun 2022 18:51:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-27 13:02:36.448808
- Title: Affinity-Aware Graph Networks
- Title(参考訳): アフィニティ認識グラフネットワーク
- Authors: Ameya Velingker, Ali Kemal Sinop, Ira Ktena, Petar Veli\v{c}kovi\'c,
Sreenivas Gollapudi
- Abstract要約: グラフニューラルネットワーク(GNN)は、リレーショナルデータを学ぶための強力なテクニックとして登場した。
グラフニューラルネットワークの特徴としてアフィニティ尺度の利用について検討する。
本稿では,これらの特徴に基づくメッセージパッシングネットワークを提案し,その性能を様々なノードおよびグラフ特性予測タスクで評価する。
- 参考スコア(独自算出の注目度): 9.888383815189176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have emerged as a powerful technique for
learning on relational data. Owing to the relatively limited number of message
passing steps they perform -- and hence a smaller receptive field -- there has
been significant interest in improving their expressivity by incorporating
structural aspects of the underlying graph. In this paper, we explore the use
of affinity measures as features in graph neural networks, in particular
measures arising from random walks, including effective resistance, hitting and
commute times. We propose message passing networks based on these features and
evaluate their performance on a variety of node and graph property prediction
tasks. Our architecture has lower computational complexity, while our features
are invariant to the permutations of the underlying graph. The measures we
compute allow the network to exploit the connectivity properties of the graph,
thereby allowing us to outperform relevant benchmarks for a wide variety of
tasks, often with significantly fewer message passing steps. On one of the
largest publicly available graph regression datasets, OGB-LSC-PCQM4Mv1, we
obtain the best known single-model validation MAE at the time of writing.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、リレーショナルデータを学ぶための強力なテクニックとして登場した。
彼らが実行するメッセージパッシングステップが比較的限られているため、より小さな受容フィールドのおかげで、基盤となるグラフの構造的側面を取り入れることで、表現力の向上に大きな関心が寄せられている。
本稿では,グラフニューラルネットワークの特徴として,特にランダムウォーク,効果的な抵抗,打撃時間,通勤時間などに起因する親和性尺度の利用について検討する。
本稿では,これらの特徴に基づくメッセージパッシングネットワークを提案し,その性能を様々なノードおよびグラフ特性予測タスクで評価する。
我々のアーキテクチャは計算複雑性が低く、我々の特徴は基礎となるグラフの置換に不変である。
この方法では、ネットワークがグラフの接続特性を活用できるため、さまざまなタスクにおいて関連するベンチマークよりもパフォーマンスが向上し、メッセージパッシングのステップが大幅に少なくなります。
OGB-LSC-PCQM4Mv1 のグラフ回帰データセットでは,書き込み時に最もよく知られた単一モデル検証MAE が得られる。
関連論文リスト
- TANGNN: a Concise, Scalable and Effective Graph Neural Networks with Top-m Attention Mechanism for Graph Representation Learning [7.879217146851148]
本稿では,Top-mアテンション機構アグリゲーションコンポーネントと近傍アグリゲーションコンポーネントを統合した,革新的なグラフニューラルネットワーク(GNN)アーキテクチャを提案する。
提案手法の有効性を評価するため,提案手法をGNN分野において未探索の新たな課題である引用感情予測に適用した。
論文 参考訳(メタデータ) (2024-11-23T05:31:25Z) - Task-Oriented Communication for Graph Data: A Graph Information Bottleneck Approach [12.451324619122405]
本稿では,コミュニケーションのオーバーヘッドを低減しつつ,鍵情報を保持するタスク中心のより小さなサブグラフを抽出する手法を提案する。
提案手法では,グラフニューラルネットワーク(GNN)とグラフ情報ボトルネック(GIB)の原理を用いて,伝達に適したコンパクトで情報的,堅牢なグラフ表現を生成する。
論文 参考訳(メタデータ) (2024-09-04T14:01:56Z) - TouchUp-G: Improving Feature Representation through Graph-Centric
Finetuning [37.318961625795204]
グラフニューラルネットワーク(GNN)は、多くのハイインパクトな実世界のグラフアプリケーションにおいて最先端のアプローチとなっている。
機能豊富なグラフでは、PMを直接利用して機能を生成するのが一般的である。
PMから抽出されたノード特徴がグラフに依存しず、GNNがグラフ構造とノード特徴の間の潜在的な相関を十分に活用できないため、このプラクティスは準最適である。
論文 参考訳(メタデータ) (2023-09-25T05:44:40Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z) - Graph Networks with Spectral Message Passing [1.0742675209112622]
本稿では,空間領域とスペクトル領域の両方にメッセージパッシングを適用するSpectral Graph Networkを紹介する。
その結果,spectrum gnは効率のよいトレーニングを促進し,より多くのパラメータを持つにもかかわらず,少ないトレーニングイテレーションで高いパフォーマンスを達成できることがわかった。
論文 参考訳(メタデータ) (2020-12-31T21:33:17Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMNはノードの特徴情報とグラフの高階局所構造を利用する新しいフレームワークである。
グラフニューラルネットワークの学習効率を大幅に改善し、新たな学習モードの確立を促進する。
論文 参考訳(メタデータ) (2020-07-31T04:18:20Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z) - Cross-GCN: Enhancing Graph Convolutional Network with $k$-Order Feature
Interactions [153.6357310444093]
Graph Convolutional Network(GCN)は,グラフデータの学習と推論を行う新興技術である。
我々は、GCNの既存の設計がクロスフィーチャをモデリングし、クロスフィーチャが重要であるタスクやデータに対してGCNの効率を損なうことを論じている。
我々は、任意の次交叉特徴を、特徴次元と順序サイズに線形に複雑にモデル化した、クロスフィーチャーグラフ畳み込みという新しい演算子を設計する。
論文 参考訳(メタデータ) (2020-03-05T13:05:27Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。