論文の概要: Eco-driving for Electric Connected Vehicles at Signalized Intersections:
A Parameterized Reinforcement Learning approach
- arxiv url: http://arxiv.org/abs/2206.12065v1
- Date: Fri, 24 Jun 2022 04:11:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-28 02:15:31.969468
- Title: Eco-driving for Electric Connected Vehicles at Signalized Intersections:
A Parameterized Reinforcement Learning approach
- Title(参考訳): 信号区間における電気接続車両のエコドライブ:パラメータ化強化学習アプローチ
- Authors: Xia Jiang, Jian Zhang, Dan Li
- Abstract要約: 本稿では、強化学習(RL)に基づく電気連系車両(CV)のエコ駆動フレームワークを提案する。
我々の戦略は、他の人間駆動車(HDV)を中断することなく適切な行動スキームを学習することで、エネルギー消費を大幅に削減できることを示す。
- 参考スコア(独自算出の注目度): 6.475252042082737
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes an eco-driving framework for electric connected vehicles
(CVs) based on reinforcement learning (RL) to improve vehicle energy efficiency
at signalized intersections. The vehicle agent is specified by integrating the
model-based car-following policy, lane-changing policy, and the RL policy, to
ensure safe operation of a CV. Subsequently, a Markov Decision Process (MDP) is
formulated, which enables the vehicle to perform longitudinal control and
lateral decisions, jointly optimizing the car-following and lane-changing
behaviors of the CVs in the vicinity of intersections. Then, the hybrid action
space is parameterized as a hierarchical structure and thereby trains the
agents with two-dimensional motion patterns in a dynamic traffic environment.
Finally, our proposed methods are evaluated in SUMO software from both a
single-vehicle-based perspective and a flow-based perspective. The results show
that our strategy can significantly reduce energy consumption by learning
proper action schemes without any interruption of other human-driven vehicles
(HDVs).
- Abstract(参考訳): 本稿では、信号交差点における車両のエネルギー効率を向上させるために、強化学習(RL)に基づく電気連系車両(CV)のエコ駆動フレームワークを提案する。
モデルベースの車追従ポリシー、車線変更ポリシー、rlポリシーを統合してcvの安全な運転を確保することにより、車両エージェントを特定する。
続いてマルコフ決定プロセス(mdp)を定式化し、交差点付近のcvsの車追従行動と車線変更動作を共同で最適化し、車両が縦方向の制御と横方向の判断を行う。
そして、ハイブリッド動作空間を階層構造としてパラメータ化し、動的交通環境下で2次元の動作パターンでエージェントを訓練する。
最後に,本提案手法は単一車両の視点とフローの視点の両方からSUMOソフトウェアで評価される。
提案手法は,他の車種(HDV)を中断することなく,適切な行動スキームを学習することで,エネルギー消費を大幅に削減できることを示す。
関連論文リスト
- SPformer: A Transformer Based DRL Decision Making Method for Connected Automated Vehicles [9.840325772591024]
本稿ではトランスフォーマーと強化学習アルゴリズムに基づくCAV意思決定アーキテクチャを提案する。
学習可能なポリシートークンは、多車連携ポリシーの学習媒体として使用される。
我々のモデルは交通シナリオにおける車両の全ての状態情報をうまく活用することができる。
論文 参考訳(メタデータ) (2024-09-23T15:16:35Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
コネクテッド・オートモービルズ(CAV)は世界中の道路試験を開始したが、複雑なシナリオにおける安全性と効率性はまだ十分ではない。
本稿では,対話型かつ学習可能なLLM駆動協調運転フレームワークCoDrivingLLMを提案する。
論文 参考訳(メタデータ) (2024-09-19T14:36:00Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - Interaction-Aware Decision-Making for Autonomous Vehicles in Forced
Merging Scenario Leveraging Social Psychology Factors [7.812717451846781]
インタラクションドライバの社会的行動と個人的目的の両方を取り入れた行動モデルを考える。
我々は、他のドライバーの意図をオンラインで見積もる、後退する水平制御に基づく意思決定戦略を開発する。
論文 参考訳(メタデータ) (2023-09-25T19:49:14Z) - Robust Driving Policy Learning with Guided Meta Reinforcement Learning [49.860391298275616]
本稿では,ソーシャルカーの多種多様な運転方針を一つのメタ政治として訓練する効率的な方法を提案する。
ソーシャルカーのインタラクションに基づく報酬関数をランダム化することにより、多様な目的を生み出し、メタ政治を効率的に訓練することができる。
本研究では,社会自動車が学習メタ政治によって制御される環境を利用して,エゴ自動車の運転方針の堅牢性を高めるためのトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-07-19T17:42:36Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - Learning to Help Emergency Vehicles Arrive Faster: A Cooperative
Vehicle-Road Scheduling Approach [24.505687255063986]
車両中心のスケジューリングアプローチは、緊急車両の最適経路を推奨する。
道路中心のスケジューリングアプローチは、交通状況を改善し、EVが交差点を通過するための優先度を高めることを目的としている。
本稿では,リアルタイム経路計画モジュールと協調交通信号制御モジュールを含む協調型VehIcle-roaDスケジューリング手法であるLEVIDを提案する。
論文 参考訳(メタデータ) (2022-02-20T10:25:15Z) - Hybrid Reinforcement Learning-Based Eco-Driving Strategy for Connected
and Automated Vehicles at Signalized Intersections [3.401874022426856]
視覚知覚法は車間通信(V2I)と統合され、より高モビリティとエネルギー効率を実現する。
HRLフレームワークには3つのコンポーネントがある。ルールベースのドライビングマネージャで、ルールベースのポリシーとRLポリシーの協調を運用する。
実験により, HRL法によりエネルギー消費量を12.70%削減し, 11.75%の移動時間を省くことができた。
論文 参考訳(メタデータ) (2022-01-19T19:31:12Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
本稿では,高密度交通シナリオにおける対話型モーションプランニングのための新しい枠組みを提案する。
我々は,他車両の協調性に関する国際的ガイダンスを提供するインタラクション対応政策であるDeep Reinforcement Learning (RL) を通じて学習することを提案する。
学習されたポリシーは、ローカル最適化ベースのプランナーを推論し、対話的な振る舞いで誘導し、他の車両が収まらない場合に安全を維持しながら、密集したトラフィックに積極的にマージする。
論文 参考訳(メタデータ) (2021-07-09T16:43:12Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z) - Deep Structured Reactive Planning [94.92994828905984]
自動運転のための新しいデータ駆動型リアクティブ計画目標を提案する。
本モデルは,非常に複雑な操作を成功させる上で,非反応性変種よりも優れることを示す。
論文 参考訳(メタデータ) (2021-01-18T01:43:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。