Parallel implementation of CNOT$^{N}$ and C$_2$NOT$^2$ gates via
homonuclear and heteronuclear F\"{o}rster interactions of Rydberg atoms
- URL: http://arxiv.org/abs/2206.12176v4
- Date: Fri, 20 Oct 2023 07:09:57 GMT
- Title: Parallel implementation of CNOT$^{N}$ and C$_2$NOT$^2$ gates via
homonuclear and heteronuclear F\"{o}rster interactions of Rydberg atoms
- Authors: Ahmed M. Farouk, I.I. Beterov, Peng Xu, S. Bergamini, I.I. Ryabtsev
- Abstract summary: We analyze schemes of high-fidelity multiqubit CNOT$N$ and C$_2$NOT$2$ gates for alkali-metal neutral atoms used as qubits.
These schemes are based on the electromagnetically induced transparency and Rydberg blockade.
- Score: 4.619601221994331
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze schemes of high-fidelity multiqubit CNOT$^{N}$ and
C$_{2}$NOT$^{2}$ gates for alkali-metal neutral atoms used as qubits. These
schemes are based on the electromagnetically induced transparency and Rydberg
blockade, as proposed by M. M\"{u}ller et al. [PRL 102, 170502 (2009)]. In the
original paper, the fidelity of multi-qubit CNOT$^{\text{N}}$ gate based on
Rydberg blockade was limited by the undesirable interaction between the target
atoms, and by the coupling laser intensity. We propose overcoming these limits
by using strong heteronuclear dipole-dipole interactions via F\"{o}rster
resonances for control and target atoms, while the target atoms are coupled by
weaker van der Waals interaction. We have optimized the gate performance in
order to achieve higher fidelity, while keeping coupling laser intensity as
small as possible in order to improve the experimental feasibility of the gate
schemes. We also considered optimization of schemes of C$_{2}$NOT$^{2}$ gates,
where the fidelity is affected by the relation between the control-control,
control-target and target-target interaction energies. Our numeric simulations
confirm that the fidelity of CNOT$^4$ gate (single control and four target
atoms) can be up to $99.3\%$ and the fidelity of C$_2$NOT$^2$ (two control and
two target atoms) is up to $99.7\%$ for the conditions which are experimentally
feasible.
Related papers
- Quantum control landscape for generation of $H$ and $T$ gates in an open
qubit with both coherent and environmental drive [57.70351255180495]
An important problem in quantum computation is generation of single-qubit quantum gates such as Hadamard ($H$) and $pi/8$ ($T$)
Here we consider the problem of optimal generation of $H$ and $T$ gates using coherent control and the environment as a resource acting on the qubit via incoherent control.
arXiv Detail & Related papers (2023-09-05T09:05:27Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Cat-qubit-inspired gate on cos($2\theta$) qubits [77.34726150561087]
We introduce a single-qubit $Z$ gate inspired by the noise-bias preserving gate of the Kerr-cat qubit.
This scheme relies on a $pi$ rotation in phase space via a beamsplitter-like transformation between a qubit and ancilla qubit.
arXiv Detail & Related papers (2023-04-04T23:06:22Z) - Electrical two-qubit gates within a pair of clock-qubit magnetic
molecules [59.45414406974091]
Enhanced coherence in HoW$_10$ molecular spin qubits has been demonstrated by use of Clock Transitions (CTs)
We explore the possibility of employing the electric field to effectangling two-qubit quantum gates among two neighbouring CT-protected HoW$_10$ qubits within a diluted crystal.
arXiv Detail & Related papers (2022-04-20T16:27:24Z) - High fidelity entanglement of neutral atoms via a Rydberg-mediated
single-modulated-pulse controlled-PHASE gate [21.457325761297675]
We report experimental results in realizing a two-qubit controlled-PHASE($C_Z$) gate via off-resonant modulated driving(ORMD) embedded in two-photon transition for Rb atoms.
Our work features completing the $C_Z$ gate operation within a single pulse to avoid shelved Rydberg population.
arXiv Detail & Related papers (2021-09-06T13:52:45Z) - A high-fidelity method for a single-step $N$-bit Toffoli gate in trapped
ions [0.0]
Conditional multi-qubit gates are a key component for elaborate quantum algorithms.
We propose a solution based on adiabatic switching of phonon mediated Ising interactions.
arXiv Detail & Related papers (2020-10-16T16:43:30Z) - Fast universal two-qubit gate for neutral fermionic atoms in optical
tweezers [0.0]
We present a method to perform a fast universal square-root-SWAP gate with fermionic atoms.
We prove analytically that in the limit of broad atomic wave-packets, the fidelity of the gate approaches unity.
A gate with such features is an important milestone towards all-to-all connectivity and fault tolerance in quantum computation with neutral atoms.
arXiv Detail & Related papers (2020-08-22T12:01:31Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Spheroidal-structure-based multi-qubit Toffoli gate via asymmetric
Rydberg interaction [6.151090395769923]
We propose an exotic multi-qubit Toffoli gate protocol via asymmetric Rydberg blockade.
The merit of a spheroidal structure lies in a well preservation of strong blocked energies between all control-target atom pairs.
Our findings may shed light on scalable neutral-atom quantum computation in special high-dimensional arrays.
arXiv Detail & Related papers (2020-07-23T11:30:26Z) - Scalability and high-efficiency of an $(n+1)$-qubit Toffoli gate sphere
via blockaded Rydberg atoms [6.151090395769923]
Current route to the creation of Toffoli gate requires implementing sequential single- and two-qubit gates.
We develop a new theoretical protocol to construct a universal $(n+1)$-qubit Toffoli gate sphere based on the Rydberg blockade mechanism.
We show that the gate errors mainly attribute to the imperfect blockade strength, the spontaneous atomic loss and the imperfect ground-state preparation.
arXiv Detail & Related papers (2020-01-14T03:00:12Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.