High fidelity entanglement of neutral atoms via a Rydberg-mediated
single-modulated-pulse controlled-PHASE gate
- URL: http://arxiv.org/abs/2109.02491v1
- Date: Mon, 6 Sep 2021 13:52:45 GMT
- Title: High fidelity entanglement of neutral atoms via a Rydberg-mediated
single-modulated-pulse controlled-PHASE gate
- Authors: Zhuo Fu, Peng Xu, Yuan Sun, Yangyang Liu, Xiaodong He, Xiao Li, Min
Liu, Runbing Li, Jin Wang, Liang Liu, Mingsheng Zhan
- Abstract summary: We report experimental results in realizing a two-qubit controlled-PHASE($C_Z$) gate via off-resonant modulated driving(ORMD) embedded in two-photon transition for Rb atoms.
Our work features completing the $C_Z$ gate operation within a single pulse to avoid shelved Rydberg population.
- Score: 21.457325761297675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neutral atom platform has become an attractive choice to study the science of
quantum information and quantum simulation, where intense efforts have been
devoted to the entangling processes between individual atoms. For the
development of this area, two-qubit controlled-PHASE gate via Rydberg blockade
is one of the most essential elements. Recent theoretical studies have
suggested the advantages of introducing non-trivial waveform modulation into
the gate protocol, which is anticipated to improve its performance towards the
next stage. We report our recent experimental results in realizing a two-qubit
controlled-PHASE($C_Z$) gate via off-resonant modulated driving(ORMD) embedded
in two-photon transition for Rb atoms. It relies upon a single modulated
driving pulse with a carefully calculated smooth waveform to gain the
appropriate phase accumulations required by the two-qubit gate. Combining this
$C_Z$ gate with global microwave pulses, two-atom entanglement is generated
with the raw fidelity of 0.945(6). Accounting for state preparation and
measurement (SPAM) errors, we extract the entanglement operation fidelity to be
0.980(7). Our work features completing the $C_Z$ gate operation within a single
pulse to avoid shelved Rydberg population, thus demonstrate another promising
route for realizing high-fidelity two-qubit gate for neutral atom platform.
Related papers
- High-fidelity $\sqrt{i\text{SWAP}}$ gates using a fixed coupler driven by two microwave pulses [12.986786945391236]
We propose a microwave-control protocol for the implementation of a two-qubit gate employing two transmon qubits coupled via a fixed-frequency transmon coupler.
We show that high-fidelity $sqrtitextSWAP$ gates can be achieved.
arXiv Detail & Related papers (2024-04-27T08:08:20Z) - Quantum control landscape for generation of $H$ and $T$ gates in an open
qubit with both coherent and environmental drive [57.70351255180495]
An important problem in quantum computation is generation of single-qubit quantum gates such as Hadamard ($H$) and $pi/8$ ($T$)
Here we consider the problem of optimal generation of $H$ and $T$ gates using coherent control and the environment as a resource acting on the qubit via incoherent control.
arXiv Detail & Related papers (2023-09-05T09:05:27Z) - High-fidelity $CCΦ$ gates via radio-frequency-induced Förster resonances [0.0]
We present a novel $CCPhi$ quantum phase gate protocol based on radio-frequency-induced F"orster resonant interactions.
We achieve theoretical gate fidelities of up to $99.7 %$ in a cryogenic environment, thus showing the protocol compatibility with modern quantum error correction techniques.
arXiv Detail & Related papers (2023-07-24T13:36:54Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Parallel implementation of CNOT$^{N}$ and C$_2$NOT$^2$ gates via
homonuclear and heteronuclear F\"{o}rster interactions of Rydberg atoms [4.619601221994331]
We analyze schemes of high-fidelity multiqubit CNOT$N$ and C$_2$NOT$2$ gates for alkali-metal neutral atoms used as qubits.
These schemes are based on the electromagnetically induced transparency and Rydberg blockade.
arXiv Detail & Related papers (2022-06-24T09:29:27Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Single temporal-pulse-modulated parameterized controlled-phase gate for
Rydberg atoms [1.6114012813668934]
We propose an adiabatic protocol for implementing a controlled-phase gate CZ$_theta$ with continuous $theta$ of neutral atoms.
For a wide range of $theta$, we can obtain the fidelity of CZ$_theta$ gate over $99.7%$ in less than $1mu$s.
arXiv Detail & Related papers (2022-01-16T07:40:26Z) - Optimal model for fewer-qubit CNOT gates with Rydberg atoms [8.01045083320546]
We report an optimal model about universal two- and three-qubit CNOT gates mediated by excitation to Rydberg states.
Compared to conventional multi-pulse piecewise schemes, our gate can be realized by simultaneous excitation of atoms to the Rydberg states.
arXiv Detail & Related papers (2021-12-16T09:54:52Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.