論文の概要: Causal Ordering Without Effect Estimation: A Framework for Using Proxies in Treatment Prioritization
- arxiv url: http://arxiv.org/abs/2206.12532v8
- Date: Tue, 14 Oct 2025 10:29:13 GMT
- ステータス: 情報取得中
- システム内更新日: 2025-10-15 12:46:20.486027
- Title: Causal Ordering Without Effect Estimation: A Framework for Using Proxies in Treatment Prioritization
- Title(参考訳): 効果推定のない因果順序付け:治療優先順位付けにおけるプロキシの利用フレームワーク
- Authors: Carlos Fernández-Loría, Jorge Loría,
- Abstract要約: 予測プロキシを推論する決定中心のフレームワークを開発する。
プロキシが処理効果の優越的なモデレーターを反映した場合に保持する正しい効果順序をプロキシが回復する条件を同定する。
これらの条件が、個別選択設定において有用な近似としてどのように現れるかを示し、介入なしに行動する確率が説得を緩やかにすることを示す。
- 参考スコア(独自算出の注目度): 3.0509197593879844
- License:
- Abstract: Who should we prioritize for treatment when causal effects cannot be estimated? In practice, organizations often rely on predictive proxies: ads are targeted using purchase probabilities, and retention incentives are allocated using churn-risk scores. These models are not causal, but they are often used with the aim of ranking individuals by treatment effects, a task we call causal ordering. We develop a decision-focused framework to reason about this practice. We identify conditions under which proxies recover the correct effect ordering, which hold when a proxy reflects a dominant moderator of treatment effects. We show how these conditions emerge as a useful approximation in discrete choice settings, where the propensity to act without an intervention moderates persuasion. Moreover, we extend beyond this case, demonstrating that proxies capturing a non-dominant moderator can still outperform CATE estimates when they target signals that are easier to estimate precisely. Building on these insights, we introduce diagnostic tools to assess proxy usefulness in practice. Finally, we illustrate the framework in advertising, where a simple predictive proxy outperforms heterogeneous-effect estimation methods.
- Abstract(参考訳): 因果効果を推定できない場合は、誰が治療に優先すべきだろうか。
広告は購入確率を使ってターゲットにされ、維持インセンティブはチャーンリスクスコアを使って割り当てられる。
これらのモデルは因果的ではないが、治療効果によって個人をランク付けする目的で使われることが多い。
私たちは、このプラクティスを推論する意思決定中心のフレームワークを開発します。
プロキシが処理効果の優越的なモデレーターを反映した場合に保持する正しい効果順序をプロキシが回復する条件を同定する。
これらの条件が、個別選択設定において有用な近似としてどのように現れるかを示し、介入なしに行動する確率が説得を緩やかにすることを示す。
さらに、このケースを超えて、非支配的なモデレーターをキャプチャするプロキシが、正確に推定し易い信号をターゲットとする場合、CATE推定を上回っていることを示す。
これらの知見に基づいて、実際にプロキシの有用性を評価するための診断ツールを導入する。
最後に、単純な予測プロキシがヘテロジニアス・エフェクト推定法より優れている広告の枠組みについて説明する。
関連論文リスト
- The Amenability Framework: Rethinking Causal Ordering Without Estimating Causal Effects [1.6114012813668932]
本稿では,介入の影響を受けやすい個体の潜伏傾向に基づく概念的枠組みを提案する。
次に、予測スコアがアメナビリティーの効果的なプロキシとなる条件を定式化する。
その結果,予測モデルは介入効果による個人格付けにおける因果効果推定よりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-04-03T10:20:48Z) - Microfoundation Inference for Strategic Prediction [26.277259491014163]
本稿では,人口に対する予測モデルの長期的影響をカプセル化した分布図の学習手法を提案する。
具体的には,エージェントの応答をコストユーティリティ問題としてモデル化し,そのコストを見積もる。
本稿では,この推定値の収束率と,クレジット・スコアリング・データセットの実証実験による品質評価について述べる。
論文 参考訳(メタデータ) (2024-11-13T19:37:49Z) - Performative Prediction on Games and Mechanism Design [69.7933059664256]
エージェントが過去の正確性に基づいて予測を信頼するかを判断する集団リスクジレンマについて検討する。
予測が集合的な結果を形成するにつれて、社会福祉は関心の指標として自然に現れる。
よりよいトレードオフを実現し、それらをメカニズム設計に使用する方法を示します。
論文 参考訳(メタデータ) (2024-08-09T16:03:44Z) - Causal Fine-Tuning and Effect Calibration of Non-Causal Predictive Models [1.3124513975412255]
本稿では,無作為な実験データを用いた因果推論のための非因果モデルの性能向上手法を提案する。
広告、顧客の保持、精密医療のような領域では、介入なしの結果を予測する非因果モデルはしばしば、介入の期待された効果に応じて個人をスコアしランク付けするために使用される。
論文 参考訳(メタデータ) (2024-06-13T20:18:16Z) - Automating the Selection of Proxy Variables of Unmeasured Confounders [16.773841751009748]
既存のプロキシ変数推定器を拡張して、治療と結果の間に複数の未測定の共同創設者が存在するシナリオに対応する。
本稿では、プロキシ変数の選択と因果効果の偏りのない推定のための2つのデータ駆動手法を提案する。
論文 参考訳(メタデータ) (2024-05-25T08:53:49Z) - Reduced-Rank Multi-objective Policy Learning and Optimization [57.978477569678844]
実際には、因果研究者は先験を念頭において1つの結果を持っていない。
政府支援の社会福祉プログラムでは、政策立案者は貧困の多次元的性質を理解するために多くの成果を集めている。
本稿では、最適政策学習の文脈において、複数の結果に対するデータ駆動型次元性推論手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T08:16:30Z) - Decoding Susceptibility: Modeling Misbelief to Misinformation Through a Computational Approach [61.04606493712002]
誤報に対する感受性は、観測不可能な不検証の主張に対する信念の度合いを記述している。
既存の感受性研究は、自己報告された信念に大きく依存している。
本稿では,ユーザの潜在感受性レベルをモデル化するための計算手法を提案する。
論文 参考訳(メタデータ) (2023-11-16T07:22:56Z) - On the Actionability of Outcome Prediction [8.32379926107182]
実践者は、最終的な目標は単に予測するのではなく、効果的に行動することだと認識します。
正確な結果の予測は、いつ最も適切な介入を特定するのに役立つのでしょうか?
結果を改善するための単一の決定的な行動がある場合を除き、結果予測は「行動価値」を最大化しない。
論文 参考訳(メタデータ) (2023-09-08T17:57:31Z) - Doubly Robust Estimation of Direct and Indirect Quantile Treatment
Effects with Machine Learning [0.0]
本稿では, 直接的および間接的量子的処理効果の機械学習推定器を提案する。
提案手法は,確率結果の累積分布関数の効率的なスコア関数に基づく。
また,統計的推測のための乗算器ブートストラップを提案し,乗算器の有効性を示す。
論文 参考訳(メタデータ) (2023-07-03T14:27:15Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - Disentangled Representation for Causal Mediation Analysis [25.114619307838602]
因果媒介分析(英: Causal mediation analysis)は、直接的および間接的な効果を明らかにするためにしばしば用いられる方法である。
深層学習はメディエーション分析において有望であるが、現在の手法では、治療、メディエーター、結果に同時に影響を及ぼす潜在的共同創設者のみを前提としている。
そこで本研究では,助成金の表現を3つのタイプに分けて,自然的直接効果,自然間接効果,および全効果を正確に推定する,ディスタングル・メディエーション分析変分自動エンコーダ(DMAVAE)を提案する。
論文 参考訳(メタデータ) (2023-02-19T23:37:17Z) - Zero-shot causal learning [64.9368337542558]
CaMLは因果メタラーニングフレームワークであり、各介入の効果をタスクとしてパーソナライズした予測を定式化する。
トレーニング時に存在しない新規介入のパーソナライズされた効果を予測することができることを示す。
論文 参考訳(メタデータ) (2023-01-28T20:14:11Z) - Neighborhood Adaptive Estimators for Causal Inference under Network
Interference [152.4519491244279]
我々は,古典的非干渉仮説の違反を考える。つまり,ある個人に対する治療が他者の結果に影響を及ぼす可能性がある。
干渉をトラクタブルにするために、干渉がどのように進行するかを記述する既知のネットワークを考える。
このような環境下での処理に対する平均的直接的処理効果の予測について検討した。
論文 参考訳(メタデータ) (2022-12-07T14:53:47Z) - Empirical Estimates on Hand Manipulation are Recoverable: A Step Towards
Individualized and Explainable Robotic Support in Everyday Activities [80.37857025201036]
ロボットシステムの鍵となる課題は、他のエージェントの振る舞いを理解することである。
正しい推論の処理は、(衝突)因子が実験的に制御されない場合、特に困難である。
人に関する観察研究を行うために必要なツールをロボットに装備することを提案する。
論文 参考訳(メタデータ) (2022-01-27T22:15:56Z) - Stochastic Intervention for Causal Effect Estimation [7.015556609676951]
介入効果を推定するための新しい確率スコアと介入効果推定器(SIE)を提案する。
また,介入効果(Ge-SIO)に特異的な遺伝的アルゴリズムを設計し,意思決定の因果的証拠を提供する。
提案手法とアルゴリズムは,最先端のベースラインと比較して,大幅な性能向上を実現することができる。
論文 参考訳(メタデータ) (2021-05-27T01:12:03Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
推定対象の偏りを伴わずに高い重なりを生じさせる,デコンファウンディングスコアを導入する。
分離スコアは観測データで識別可能なゼロ共分散条件を満たすことを示す。
特に,この手法が標準正規化の魅力的な代替となることを示す。
論文 参考訳(メタデータ) (2021-04-12T18:50:11Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
本研究は, 過去のデータからすべての関連要因を抽出した環境で, 事実予測タスクについて検討する。
本稿では,この環境下での対実予測モデル学習のための2次ロバスト手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T15:49:05Z) - Nonparametric inference for interventional effects with multiple
mediators [0.0]
より柔軟で、おそらく機械学習に基づく推定技術を可能にする理論を提供する。
提案した推定器の複数のロバスト性特性を示す。
本研究は, 介入媒介効果の推定において, 最新の統計的学習手法を活用する手段を提供する。
論文 参考訳(メタデータ) (2020-01-16T19:05:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。