論文の概要: Video Anomaly Detection via Prediction Network with Enhanced
Spatio-Temporal Memory Exchange
- arxiv url: http://arxiv.org/abs/2206.12914v1
- Date: Sun, 26 Jun 2022 16:10:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-28 14:18:15.813503
- Title: Video Anomaly Detection via Prediction Network with Enhanced
Spatio-Temporal Memory Exchange
- Title(参考訳): 時空間記憶交換の強化による予測ネットワークによる映像異常検出
- Authors: Guodong Shen, Yuqi Ouyang, Victor Sanchez
- Abstract要約: ビデオ異常検出は、ほとんどの異常は少なく、決定論的ではないため、難しい作業である。
大規模なメモリ交換を拡張した畳み込みLSTM自動エンコーダ予測フレームワークを設計する。
3つのベンチマークで評価した結果,我々のフレームワークは既存の予測に基づく異常検出手法よりも優れていた。
- 参考スコア(独自算出の注目度): 21.334952965297667
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video anomaly detection is a challenging task because most anomalies are
scarce and non-deterministic. Many approaches investigate the reconstruction
difference between normal and abnormal patterns, but neglect that anomalies do
not necessarily correspond to large reconstruction errors. To address this
issue, we design a Convolutional LSTM Auto-Encoder prediction framework with
enhanced spatio-temporal memory exchange using bi-directionalilty and a
higher-order mechanism. The bi-directional structure promotes learning the
temporal regularity through forward and backward predictions. The unique
higher-order mechanism further strengthens spatial information interaction
between the encoder and the decoder. Considering the limited receptive fields
in Convolutional LSTMs, we also introduce an attention module to highlight
informative features for prediction. Anomalies are eventually identified by
comparing the frames with their corresponding predictions. Evaluations on three
popular benchmarks show that our framework outperforms most existing
prediction-based anomaly detection methods.
- Abstract(参考訳): ビデオ異常検出は、ほとんどの異常が希少かつ非決定論的であるため、難しい課題である。
多くのアプローチは正常パターンと異常パターンの再構成の違いを調査しているが、異常は必ずしも大きな再構成誤差に対応していない。
この問題に対処するために,双方向性と高次機構を用いた時空間メモリ交換を拡張した畳み込みLSTM自動エンコーダ予測フレームワークを設計した。
双方向構造は、前方および後方の予測を通じて時間的正則性の学習を促進する。
ユニークな高次機構は、エンコーダとデコーダの間の空間情報相互作用をさらに強化する。
畳み込み型lstmにおける限定受容場を考えると,予測のための情報的特徴を強調するアテンションモジュールも導入する。
最終的に異常は、フレームと対応する予測を比較することで識別される。
3つの人気のあるベンチマークの評価では、既存の予測に基づく異常検出手法よりも優れたフレームワークが示されている。
関連論文リスト
- MIXAD: Memory-Induced Explainable Time Series Anomaly Detection [21.208134038200203]
MIXAD(Memory Explainable Time Series Atemporally Detection)は,異常検出を解釈可能なモデルである。
また,異常時のメモリアクティベーションパターンの著しい変化を検出する新しい異常スコアリング手法を提案する。
我々のアプローチは、適切な検出性能を保証するだけでなく、解釈可能性指標の34.30%と34.51%で最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2024-10-30T06:46:23Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
我々は、先行のない異常発生パラダイムを導入し、GRADと呼ばれる革新的な教師なし異常検出フレームワークを開発した。
PatchDiffは、様々な種類の異常パターンを効果的に公開する。
MVTec ADとMVTec LOCOデータセットの両方の実験も、前述の観測をサポートする。
論文 参考訳(メタデータ) (2023-12-26T07:08:06Z) - Multi-level Memory-augmented Appearance-Motion Correspondence Framework
for Video Anomaly Detection [1.9511777443446219]
マルチレベルメモリ拡張外見対応フレームワークを提案する。
外観と動きの潜在的対応は、外見と動きのセマンティックスアライメントとセマンティックス代替トレーニングによって探索される。
我々のフレームワークは最先端の手法より優れており、UCSD Ped2、CUHK Avenue、ShanghaiTechのデータセットで99.6%、93.8%、76.3%のAUCを達成した。
論文 参考訳(メタデータ) (2023-03-09T08:43:06Z) - Making Reconstruction-based Method Great Again for Video Anomaly
Detection [64.19326819088563]
ビデオの異常検出は重要な問題だが、難しい問題だ。
既存の再構成に基づく手法は、昔ながらの畳み込みオートエンコーダに依存している。
連続フレーム再構築のための新しいオートエンコーダモデルを提案する。
論文 参考訳(メタデータ) (2023-01-28T01:57:57Z) - Are we certain it's anomalous? [57.729669157989235]
時系列における異常検出は、高度に非線形な時間的相関のため、異常は稀であるため、複雑なタスクである。
本稿では,異常検出(HypAD)におけるハイパボリック不確実性の新しい利用法を提案する。
HypADは自己指導で入力信号を再構築する。
論文 参考訳(メタデータ) (2022-11-16T21:31:39Z) - Spatio-temporal predictive tasks for abnormal event detection in videos [60.02503434201552]
オブジェクトレベルの正規化パターンを学習するための制約付きプレテキストタスクを提案する。
我々のアプローチは、ダウンスケールの視覚的クエリとそれに対応する正常な外観と運動特性のマッピングを学習することである。
いくつかのベンチマークデータセットの実験では、異常の局所化と追跡のためのアプローチの有効性が示されている。
論文 参考訳(メタデータ) (2022-10-27T19:45:12Z) - Memory-augmented Adversarial Autoencoders for Multivariate Time-series
Anomaly Detection with Deep Reconstruction and Prediction [4.033624665609417]
本稿では,時系列の非教師付き異常検出手法であるMemAAEを提案する。
2つの補完的プロキシタスク、再構築と予測を共同でトレーニングすることにより、複数のタスクによる異常検出が優れた性能を得ることを示す。
MemAAEは4つの公開データセットで総合F1スコアの0.90を達成し、最高のベースラインである0.02を上回っている。
論文 参考訳(メタデータ) (2021-10-15T18:29:05Z) - Convolutional Transformer based Dual Discriminator Generative
Adversarial Networks for Video Anomaly Detection [27.433162897608543]
本稿では,CT-D2GAN(Conversaal Transformer based Dual Discriminator Generative Adrial Networks)を提案する。
これには、入力クリップの空間情報をキャプチャする畳み込みエンコーダ(convolutional encoder)と、時間的ダイナミクスをエンコードして将来のフレームを予測する時間的自己アテンションモジュール(temporal self-attention module)という3つのキーコンポーネントが含まれている。
論文 参考訳(メタデータ) (2021-07-29T03:07:25Z) - FastAno: Fast Anomaly Detection via Spatio-temporal Patch Transformation [6.112591965159383]
本研究では,空間回転変換 (SRT) と時間混合変換 (TMT) を提案し,通常のフレームキューブ内で不規則なパッチキューブを生成する。
提案手法は,3つの異常検出ベンチマークで評価され,競争精度が向上し,それまでのすべての作業を速度的に上回っている。
論文 参考訳(メタデータ) (2021-06-16T08:14:31Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
正規データと異常データの間のKL偏差を計測する新たな目的関数を提案する。
提案手法は,複数のベンチマークデータセットの最先端性能を著しく上回っている。
論文 参考訳(メタデータ) (2020-12-09T08:16:35Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。