PARTICUL: Part Identification with Confidence measure using Unsupervised
Learning
- URL: http://arxiv.org/abs/2206.13304v1
- Date: Mon, 27 Jun 2022 13:44:49 GMT
- Title: PARTICUL: Part Identification with Confidence measure using Unsupervised
Learning
- Authors: Romain Xu-Darme (LSL, MRIM ), Georges Qu\'enot (MRIM ), Zakaria
Chihani (LSL), Marie-Christine Rousset (SLIDE )
- Abstract summary: PARTICUL is a novel algorithm for unsupervised learning of part detectors from datasets used in fine-grained recognition.
It exploits the macro-similarities of all images in the training set in order to mine for recurring patterns in the feature space of a pre-trained convolutional neural network.
We show that our detectors can consistently highlight parts of the object while providing a good measure of the confidence in their prediction.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present PARTICUL, a novel algorithm for unsupervised
learning of part detectors from datasets used in fine-grained recognition. It
exploits the macro-similarities of all images in the training set in order to
mine for recurring patterns in the feature space of a pre-trained convolutional
neural network. We propose new objective functions enforcing the locality and
unicity of the detected parts. Additionally, we embed our detectors with a
confidence measure based on correlation scores, allowing the system to estimate
the visibility of each part. We apply our method on two public fine-grained
datasets (Caltech-UCSD Bird 200 and Stanford Cars) and show that our detectors
can consistently highlight parts of the object while providing a good measure
of the confidence in their prediction. We also demonstrate that these detectors
can be directly used to build part-based fine-grained classifiers that provide
a good compromise between the transparency of prototype-based approaches and
the performance of non-interpretable methods.
Related papers
- Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Learning ECG signal features without backpropagation [0.0]
We propose a novel method to generate representations for time series-type data.
This method relies on ideas from theoretical physics to construct a compact representation in a data-driven way.
We demonstrate the effectiveness of our approach on the task of ECG signal classification, achieving state-of-the-art performance.
arXiv Detail & Related papers (2023-07-04T21:35:49Z) - Deepfake Detection via Joint Unsupervised Reconstruction and Supervised
Classification [25.84902508816679]
We introduce a novel approach for deepfake detection, which considers the reconstruction and classification tasks simultaneously.
This method shares the information learned by one task with the other, which focuses on a different aspect other existing works rarely consider.
Our method achieves state-of-the-art performance on three commonly-used datasets.
arXiv Detail & Related papers (2022-11-24T05:44:26Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3D object detection networks tend to be biased towards the data they are trained on.
We propose a single-frame approach for source-free, unsupervised domain adaptation of lidar-based 3D object detectors.
arXiv Detail & Related papers (2021-11-30T18:42:42Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
We propose a simple method to derive 2D representation from detection scores produced by an arbitrary set of binary classifiers.
Based upon rank correlations, our method facilitates a visual comparison of classifiers with arbitrary scores.
While the approach is fully versatile and can be applied to any detection task, we demonstrate the method using scores produced by automatic speaker verification and voice anti-spoofing systems.
arXiv Detail & Related papers (2021-06-11T13:03:33Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
We introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera.
We exploit a self-supervised loss function that we exploit to train a proposal-based segmentation network.
We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
arXiv Detail & Related papers (2020-11-11T08:34:40Z) - A Self-Training Approach for Point-Supervised Object Detection and
Counting in Crowds [54.73161039445703]
We propose a novel self-training approach that enables a typical object detector trained only with point-level annotations.
During training, we utilize the available point annotations to supervise the estimation of the center points of objects.
Experimental results show that our approach significantly outperforms state-of-the-art point-supervised methods under both detection and counting tasks.
arXiv Detail & Related papers (2020-07-25T02:14:42Z) - Interpolation-based semi-supervised learning for object detection [44.37685664440632]
We propose an Interpolation-based Semi-supervised learning method for object detection.
The proposed losses dramatically improve the performance of semi-supervised learning as well as supervised learning.
arXiv Detail & Related papers (2020-06-03T10:53:44Z) - Interpretable and Accurate Fine-grained Recognition via Region Grouping [14.28113520947247]
We present an interpretable deep model for fine-grained visual recognition.
At the core of our method lies the integration of region-based part discovery and attribution within a deep neural network.
Our results compare favorably to state-of-the-art methods on classification tasks.
arXiv Detail & Related papers (2020-05-21T01:18:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.