論文の概要: Distinguishing Learning Rules with Brain Machine Interfaces
- arxiv url: http://arxiv.org/abs/2206.13448v1
- Date: Mon, 27 Jun 2022 16:58:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-28 13:53:51.968313
- Title: Distinguishing Learning Rules with Brain Machine Interfaces
- Title(参考訳): 脳機械インタフェースによる学習規則の廃止
- Authors: Jacob P. Portes, Christian Schmid, James M. Murray
- Abstract要約: 生物学的に妥当な教師付きおよび強化学習ルールを検討する。
学習中のネットワーク活動の変化を観察することにより,学習ルールを区別する指標を導出する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite extensive theoretical work on biologically plausible learning rules,
it has been difficult to obtain clear evidence about whether and how such rules
are implemented in the brain. We consider biologically plausible supervised-
and reinforcement-learning rules and ask whether changes in network activity
during learning can be used to determine which learning rule is being used.
Supervised learning requires a credit-assignment model estimating the mapping
from neural activity to behavior, and, in a biological organism, this model
will inevitably be an imperfect approximation of the ideal mapping, leading to
a bias in the direction of the weight updates relative to the true gradient.
Reinforcement learning, on the other hand, requires no credit-assignment model
and tends to make weight updates following the true gradient direction. We
derive a metric to distinguish between learning rules by observing changes in
the network activity during learning, given that the mapping from brain to
behavior is known by the experimenter. Because brain-machine interface (BMI)
experiments allow for perfect knowledge of this mapping, we focus on modeling a
cursor-control BMI task using recurrent neural networks, showing that learning
rules can be distinguished in simulated experiments using only observations
that a neuroscience experimenter would plausibly have access to.
- Abstract(参考訳): 生物学的に妥当な学習規則に関する広範な理論的研究にもかかわらず、そのような規則が脳にどのように実装されているかという明確な証拠を得るのは難しい。
生物学的に妥当な教師付き強化学習ルールを検討し,学習中のネットワーク活動の変化を利用して,どの学習ルールが使用されているのかを判断する。
教師付き学習には、神経活動から行動へのマッピングを推定する信用割り当てモデルが必要であり、生物学的生物では、このモデルは必然的に理想的なマッピングの不完全な近似となり、真の勾配に対する重量更新の方向のバイアスにつながる。
一方、強化学習は信用割り当てモデルを必要としないため、真の勾配方向に従って重みを更新する傾向がある。
脳から行動へのマッピングが実験者によって知られていることを考えると、学習中のネットワーク活動の変化を観察して学習規則を区別する指標を導出する。
脳-機械インタフェース(BMI)実験は、このマッピングの完全な知識を可能にするため、リカレントニューラルネットワークを用いてカーソル制御されたBMIタスクをモデル化することに集中し、神経科学実験者がアクセス可能なであろう観測のみを使用して、学習規則をシミュレーション実験で区別できることを示します。
関連論文リスト
- Towards Biologically Plausible Computing: A Comprehensive Comparison [24.299920289520013]
バックプロパゲーションは、教師あり学習のためのニューラルネットワークのトレーニングの基盤となるアルゴリズムである。
バックプロパゲーションの生物学的妥当性は、重量対称性、大域的誤差計算、二重位相学習の要求により疑問視される。
本研究では,望ましい学習アルゴリズムが満たすべき生物学的妥当性の基準を確立する。
論文 参考訳(メタデータ) (2024-06-23T09:51:20Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Measures of Information Reflect Memorization Patterns [53.71420125627608]
異なるニューロンの活性化パターンの多様性は、モデル一般化と記憶の反映であることを示す。
重要なことは、情報組織が記憶の2つの形態を指していることである。
論文 参考訳(メタデータ) (2022-10-17T20:15:24Z) - The least-control principle for learning at equilibrium [65.2998274413952]
我々は、平衡反復ニューラルネットワーク、深層平衡モデル、メタラーニングを学ぶための新しい原理を提案する。
私たちの結果は、脳がどのように学習するかを明らかにし、幅広い機械学習問題にアプローチする新しい方法を提供します。
論文 参考訳(メタデータ) (2022-07-04T11:27:08Z) - Minimizing Control for Credit Assignment with Strong Feedback [65.59995261310529]
ディープニューラルネットワークにおける勾配に基づくクレジット割り当ての現在の手法は、無限小のフィードバック信号を必要とする。
我々は、神経活動に対する強いフィードバックと勾配に基づく学習を組み合わせることで、ニューラルネットワークの最適化に関する新たな視点を自然に導き出すことを示す。
DFCにおける強いフィードバックを用いることで、空間と時間において完全に局所的な学習規則を用いることで、前向きとフィードバックの接続を同時に学習できることを示す。
論文 参考訳(メタデータ) (2022-04-14T22:06:21Z) - The brain as a probabilistic transducer: an evolutionarily plausible
network architecture for knowledge representation, computation, and behavior [14.505867475659274]
我々は進化的にも計算的にも可能な、脳と行動に関する一般的な理論的枠組みを提供する。
私たちの抽象モデルの脳は、ノードとエッジのネットワークです。ネットワーク内のノードとエッジには、重みとアクティベーションレベルがあります。
ネットワークの生来の(遺伝的)コンポーネントを指定することで、進化がネットワークに最初の適応ルールと学習を通じて豊かになる目標を与える方法を示す。
論文 参考訳(メタデータ) (2021-12-26T14:37:47Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Credit Assignment in Neural Networks through Deep Feedback Control [59.14935871979047]
ディープフィードバックコントロール(Deep Feedback Control, DFC)は、フィードバックコントローラを使用して、望ましい出力ターゲットにマッチするディープニューラルネットワークを駆動し、クレジット割り当てに制御信号を使用する新しい学習方法である。
学習規則は空間と時間において完全に局所的であり、幅広い接続パターンに対するガウス・ニュートンの最適化を近似する。
さらに,DFCと皮質錐体ニューロンのマルチコンパートメントモデルと,局所的な電圧依存性のシナプス可塑性規則を関連づける。
論文 参考訳(メタデータ) (2021-06-15T05:30:17Z) - Identifying Learning Rules From Neural Network Observables [26.96375335939315]
学習ルールの異なるクラスは、重み、アクティベーション、即時的な階層的活動変化の集計統計に基づいてのみ分離可能であることを示す。
本研究は, シナプス後活動の電気生理学的記録から得られる活性化パターンが, 学習規則の同定に有効であることを示すものである。
論文 参考訳(メタデータ) (2020-10-22T14:36:54Z) - Local plasticity rules can learn deep representations using
self-supervised contrastive predictions [3.6868085124383616]
生物学的制約を尊重するが、深い階層的な表現をもたらす学習規則はまだ不明である。
本稿では,神経科学からインスピレーションを得た学習ルールを提案し,近年の自己教師型深層学習の進歩について述べる。
この自己監督的かつ局所的なルールで訓練されたネットワークは、画像、音声、ビデオの深い階層的表現を構築する。
論文 参考訳(メタデータ) (2020-10-16T09:32:35Z) - Learning to Learn with Feedback and Local Plasticity [9.51828574518325]
我々はメタラーニングを用いて、フィードバック接続と局所的、生物学的にインスパイアされた学習ルールを用いて学習するネットワークを発見する。
実験の結果, メタトレーニングネットワークは, 多層アーキテクチャにおけるオンラインクレジット割り当てにフィードバック接続を効果的に利用していることがわかった。
論文 参考訳(メタデータ) (2020-06-16T22:49:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。