論文の概要: DistSPECTRL: Distributing Specifications in Multi-Agent Reinforcement
Learning Systems
- arxiv url: http://arxiv.org/abs/2206.13754v1
- Date: Tue, 28 Jun 2022 04:53:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-02 14:58:22.633420
- Title: DistSPECTRL: Distributing Specifications in Multi-Agent Reinforcement
Learning Systems
- Title(参考訳): DistSPECTRL:マルチエージェント強化学習システムにおける仕様の配布
- Authors: Joe Eappen and Suresh Jagannathan
- Abstract要約: 本稿では,局所的およびグローバルな目的の自然な構成を可能にする,新しい仕様フレームワークを提案する。
本手法により,エージェントが局所的な目的に対して協調的な操作を行えるような表現的ポリシーの学習が可能になる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While notable progress has been made in specifying and learning objectives
for general cyber-physical systems, applying these methods to distributed
multi-agent systems still pose significant challenges. Among these are the need
to (a) craft specification primitives that allow expression and interplay of
both local and global objectives, (b) tame explosion in the state and action
spaces to enable effective learning, and (c) minimize coordination frequency
and the set of engaged participants for global objectives. To address these
challenges, we propose a novel specification framework that allows natural
composition of local and global objectives used to guide training of a
multi-agent system. Our technique enables learning expressive policies that
allow agents to operate in a coordination-free manner for local objectives,
while using a decentralized communication protocol for enforcing global ones.
Experimental results support our claim that sophisticated multi-agent
distributed planning problems can be effectively realized using
specification-guided learning.
- Abstract(参考訳): 一般的なサイバー物理システムの目標の特定や学習において注目すべき進歩はあったが、分散マルチエージェントシステムへのこれらの手法の適用は依然として大きな課題となっている。
その中でも必要なのは
(a)局所目的とグローバル目的の両方の表現と相互運用を可能にするクラフト仕様プリミティブ。
b) 効果的な学習を可能にする状態と行動空間におけるテーム爆発
(c) 調整頻度を最小化し、グローバルな目的のために参加する参加者の集合。
これらの課題に対処するため、我々は、マルチエージェントシステムのトレーニングをガイドするために、ローカルおよびグローバルな目的の自然な構成を可能にする新しい仕様フレームワークを提案する。
本手法は,グローバル化のための分散通信プロトコルを用いながら,エージェントが局所目的に対して協調フリーで操作できるような表現力のあるポリシーを学習することを可能にする。
実験結果は,高度なマルチエージェント分散計画問題を仕様学習を用いて効果的に実現できるという主張を裏付ける。
関連論文リスト
- Hierarchical Consensus-Based Multi-Agent Reinforcement Learning for Multi-Robot Cooperation Tasks [17.914928652949314]
階層型合意に基づくマルチエージェント強化学習(HC-MARL)フレームワークを導入し,その限界に対処する。
HC-MARLは、エージェント間のグローバルコンセンサスを促進するために対照的な学習を採用し、直接のコミュニケーションなしに協調行動を可能にする。
様々なタスクの動的な要求を満たすために、コンセンサスを複数の層に分割し、短期的および長期的考慮を包含する。
論文 参考訳(メタデータ) (2024-07-11T03:55:55Z) - Personalized Wireless Federated Learning for Large Language Models [75.22457544349668]
大規模言語モデル(LLM)は自然言語処理タスクに革命をもたらした。
無線ネットワークへの展開は、プライバシとセキュリティ保護機構の欠如など、依然として課題に直面している。
通信オーバーヘッドの少ない2つのパーソナライズされた無線フェデレーションファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2024-04-20T02:30:21Z) - Exploiting CLIP for Zero-shot HOI Detection Requires Knowledge
Distillation at Multiple Levels [52.50670006414656]
大規模事前学習型視覚言語モデルであるCLIPを,多段階の知識蒸留に利用した。
私たちのモデルをトレーニングするために、CLIPを使用して、グローバルイメージとローカルユニオン領域の両方のHOIスコアを生成する。
このモデルは、完全な教師付きおよび弱い教師付き手法に匹敵する強力な性能を達成する。
論文 参考訳(メタデータ) (2023-09-10T16:27:54Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
我々は、動的システムの定性理論から知られているトラップ領域の概念を適用し、分散学習のための共同戦略空間に安全セットを作成する。
本稿では,既知の学習力学を持つシステムにおいて,候補がトラップ領域を形成することを検証するための二分分割アルゴリズムと,学習力学が未知のシナリオに対するサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T14:47:52Z) - AdverSAR: Adversarial Search and Rescue via Multi-Agent Reinforcement
Learning [4.843554492319537]
本稿では,敵対的エージェント間コミュニケーションの存在下で,ロボットの戦略を効率的に調整するアルゴリズムを提案する。
ロボットは対象の場所について事前の知識を持っておらず、隣接するロボットのサブセットのみといつでも対話できると仮定される。
提案手法の有効性は, グリッドワールド環境のプロトタイプで実証した。
論文 参考訳(メタデータ) (2022-12-20T08:13:29Z) - Discrete Factorial Representations as an Abstraction for Goal
Conditioned Reinforcement Learning [99.38163119531745]
離散化ボトルネックを適用することにより,目標条件付きRLセットアップの性能が向上することを示す。
分布外目標に対する期待した回帰を実験的に証明し、同時に表現的な構造で目標を指定できるようにします。
論文 参考訳(メタデータ) (2022-11-01T03:31:43Z) - Learning Efficient Multi-Agent Cooperative Visual Exploration [18.42493808094464]
複数のエージェントによる視覚的屋内探索の課題を考察し、エージェントはできるだけ少ないステップで屋内全領域を探索する必要がある。
我々は、最先端の単一エージェントRLソリューションであるActive Neural SLAM(ANS)を、新しいRLベースのグローバルゴールプランナーであるSpatial Coordination Planner(SCP)を導入してマルチエージェント設定に拡張する。
SCPは、各エージェントの空間情報をエンドツーエンドに活用し、探索効率の高い異なる空間目標に向けて効果的にエージェントを誘導する。
論文 参考訳(メタデータ) (2021-10-12T04:48:10Z) - AoI-Aware Resource Allocation for Platoon-Based C-V2X Networks via
Multi-Agent Multi-Task Reinforcement Learning [22.890835786710316]
本稿は,小隊の無線リソース管理を意識した情報年齢(AoI)の問題について検討する。
複数の自律型プラトンは、C-V2X通信技術を利用して、協力的認識メッセージ(CAM)をフォロワーに広める。
我々は,マルチエージェント強化学習(marl)に基づく分散リソース割当フレームワークを活用し,各小隊リーダ(pl)がエージェントとして行動し,環境と相互作用して最適方針を学ぶ。
論文 参考訳(メタデータ) (2021-05-10T08:39:56Z) - DisCo RL: Distribution-Conditioned Reinforcement Learning for
General-Purpose Policies [116.12670064963625]
分散条件強化学習(DisCo RL)と呼ばれるオフポリシーアルゴリズムを開発し、コンテキストポリシーを効率的に学習します。
DisCo RLをさまざまなロボット操作タスクで評価し、新しい目標分布への一般化を必要とするタスクの以前の方法を大幅に上回っていることを発見しました。
論文 参考訳(メタデータ) (2021-04-23T16:51:58Z) - Exploring Zero-Shot Emergent Communication in Embodied Multi-Agent
Populations [59.608216900601384]
本研究では,3次元環境下で関節を作動させることでコミュニケーションを学ぶエージェントについて検討する。
現実的な仮定、意図の非一様分布、共通知識エネルギーコストにおいて、これらのエージェントは新規パートナーに一般化するプロトコルを見つけることができることを示す。
論文 参考訳(メタデータ) (2020-10-29T19:23:10Z) - A Distributional View on Multi-Objective Policy Optimization [24.690800846837273]
大規模不変な方法で目的の好みを設定することができる多目的強化学習アルゴリズムを提案する。
フレームワーク内で異なる好みを設定することで、非支配的なソリューションの空間を追跡できることを示す。
論文 参考訳(メタデータ) (2020-05-15T13:02:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。