CoAP-DoS: An IoT Network Intrusion Dataset
- URL: http://arxiv.org/abs/2206.14341v1
- Date: Wed, 29 Jun 2022 00:50:15 GMT
- Title: CoAP-DoS: An IoT Network Intrusion Dataset
- Authors: Jared Mathews, Prosenjit Chatterjee, Shankar Banik
- Abstract summary: Internet of Things (IoT) devices are susceptible to denial-of-service attacks.
There are many network traffic data sets but very few that focus on IoT network traffic.
We develop a new data set by collecting network traffic from real CoAP denial of service attacks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The need for secure Internet of Things (IoT) devices is growing as IoT
devices are becoming more integrated into vital networks. Many systems rely on
these devices to remain available and provide reliable service. Denial of
service attacks against IoT devices are a real threat due to the fact these low
power devices are very susceptible to denial-of-service attacks. Machine
learning enabled network intrusion detection systems are effective at
identifying new threats, but they require a large amount of data to work well.
There are many network traffic data sets but very few that focus on IoT network
traffic. Within the IoT network data sets there is a lack of CoAP denial of
service data. We propose a novel data set covering this gap. We develop a new
data set by collecting network traffic from real CoAP denial of service attacks
and compare the data on multiple different machine learning classifiers. We
show that the data set is effective on many classifiers.
Related papers
- FedMADE: Robust Federated Learning for Intrusion Detection in IoT Networks Using a Dynamic Aggregation Method [7.842334649864372]
Internet of Things (IoT) devices across multiple sectors has escalated serious network security concerns.
Traditional Machine Learning (ML)-based Intrusion Detection Systems (IDSs) for cyber-attack classification require data transmission from IoT devices to a centralized server for traffic analysis, raising severe privacy concerns.
We introduce FedMADE, a novel dynamic aggregation method, which clusters devices by their traffic patterns and aggregates local models based on their contributions towards overall performance.
arXiv Detail & Related papers (2024-08-13T18:42:34Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - IoTScent: Enhancing Forensic Capabilities in Internet of Things Gateways [45.44831696628473]
This paper presents IoTScent, an open-source forensic tool that enables IoT gateways and Home Automation platforms to perform IoT traffic capture and analysis.
IoTScent is specifically designed to operate over IEEE5.4-based traffic, which is the basis for many IoT-specific protocols such as Zigbee, 6LoWPAN and Thread.
This work provides a comprehensive description of the IoTScent tool, including a practical use case that demonstrates the use of the tool to perform device identification from Zigbee traffic.
arXiv Detail & Related papers (2023-10-05T09:10:05Z) - IoT Device Identification Based on Network Communication Analysis Using
Deep Learning [43.0717346071013]
The risk of attacks on an organization's network has increased due to the growing use of less secure IoT devices.
To tackle this threat and protect their networks, organizations generally implement security policies in which only white listed IoT devices are allowed on the network.
In this research, deep learning is applied to network communication for the automated identification of IoT devices permitted on the network.
arXiv Detail & Related papers (2023-03-02T13:44:58Z) - Unsupervised Ensemble Based Deep Learning Approach for Attack Detection
in IoT Network [0.0]
Internet of Things (IoT) has altered living by controlling devices/things over the Internet.
To bring down the IoT network, attackers can utilise these devices to conduct a variety of network attacks.
In this paper, we have developed an unsupervised ensemble learning model that is able to detect new or unknown attacks in an IoT network from an unlabelled dataset.
arXiv Detail & Related papers (2022-07-16T11:12:32Z) - Semi-supervised Variational Temporal Convolutional Network for IoT
Communication Multi-anomaly Detection [3.3659034873495632]
Internet of Things (IoT) devices are constructed to build a huge communications network.
These devices are insecure in reality, it means that the communications network are exposed by the attacker.
In this paper, we propose SS-VTCN, a semi-supervised network for IoT multiple anomaly detection.
arXiv Detail & Related papers (2021-04-05T08:51:24Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z) - Lightweight IoT Malware Detection Solution Using CNN Classification [2.288885651912488]
The security aspect of IoT devices is an infant field, which is why it is our focus in this paper.
We developed a system that can recognize malicious behavior of a specific IoT node on the network.
Through convolutional neural network and monitoring, we were able to provide malware detection for IoT using a central node that can be installed within the network.
arXiv Detail & Related papers (2020-10-13T10:56:33Z) - Zero-Bias Deep Learning for Accurate Identification of Internet of
Things (IoT) Devices [20.449229983283736]
We propose an enhanced deep learning framework for IoT device identification using physical layer signals.
We have evaluated the effectiveness of the proposed framework using real data from ADS-B (Automatic Dependent Surveillance-Broadcast), an application of IoT in aviation.
arXiv Detail & Related papers (2020-08-27T20:50:48Z) - IoT Device Identification Using Deep Learning [43.0717346071013]
The growing use of IoT devices in organizations has increased the number of attack vectors available to attackers.
The widely adopted bring your own device (BYOD) policy which allows an employee to bring any IoT device into the workplace and attach it to an organization's network also increases the risk of attacks.
In this study, we applied deep learning on network traffic to automatically identify IoT devices connected to the network.
arXiv Detail & Related papers (2020-02-25T12:24:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.