論文の概要: Approximate Data Deletion in Generative Models
- arxiv url: http://arxiv.org/abs/2206.14439v1
- Date: Wed, 29 Jun 2022 07:24:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-30 20:04:53.344342
- Title: Approximate Data Deletion in Generative Models
- Title(参考訳): 生成モデルにおける近似データ削除
- Authors: Zhifeng Kong and Scott Alfeld
- Abstract要約: 生成モデルのための密度比に基づくフレームワークを提案する。
トレーニングポイントが削除されたか否かを推定するための高速なデータ削除法と統計テストを導入する。
- 参考スコア(独自算出の注目度): 5.596752018167751
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Users have the right to have their data deleted by third-party learned
systems, as codified by recent legislation such as the General Data Protection
Regulation (GDPR) and the California Consumer Privacy Act (CCPA). Such data
deletion can be accomplished by full re-training, but this incurs a high
computational cost for modern machine learning models. To avoid this cost, many
approximate data deletion methods have been developed for supervised learning.
Unsupervised learning, in contrast, remains largely an open problem when it
comes to (approximate or exact) efficient data deletion. In this paper, we
propose a density-ratio-based framework for generative models. Using this
framework, we introduce a fast method for approximate data deletion and a
statistical test for estimating whether or not training points have been
deleted. We provide theoretical guarantees under various learner assumptions
and empirically demonstrate our methods across a variety of generative methods.
- Abstract(参考訳): ユーザは、General Data Protection Regulation(GDPR)やCalifornia Consumer Privacy Act(CCPA)といった最近の法律で定式化された、サードパーティの学習システムによってデータを削除する権利を持つ。
このようなデータ削除は、完全な再トレーニングによって達成できるが、現代の機械学習モデルには高い計算コストがかかる。
このコストを回避するため、教師付き学習のための近似データ削除法が数多く開発されている。
対照的に教師なし学習は、(ほぼまたは正確に)効率的なデータ削除に関して、ほとんどオープンな問題である。
本稿では,生成モデルのための密度比に基づくフレームワークを提案する。
このフレームワークを用いて,データ削除を近似する高速な手法と,トレーニングポイントが削除されたかどうかを推定するための統計的テストを導入する。
様々な学習者の仮定の下で理論的な保証を提供し、様々な生成手法を実証的に示す。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Random Relabeling for Efficient Machine Unlearning [8.871042314510788]
個人が個人データと関連するデータプライバシ規則を撤回する権利は、機械学習に大きな課題をもたらす。
本研究では,逐次データ削除要求を効率的に処理するためのランダムな学習手法を提案する。
確率分布の類似性に基づく制約の少ない除去証明法も提案する。
論文 参考訳(メタデータ) (2023-05-21T02:37:26Z) - AI Model Disgorgement: Methods and Choices [127.54319351058167]
本稿では,現代の機械学習システムに適用可能な分類法を紹介する。
学習モデルにおけるデータ「効果の除去」の意味を,スクラッチからリトレーニングする必要のない方法で検討する。
論文 参考訳(メタデータ) (2023-04-07T08:50:18Z) - Learning to Unlearn: Instance-wise Unlearning for Pre-trained
Classifiers [71.70205894168039]
そこでは、事前訓練されたモデルからインスタンスのセットに関する情報を削除することを目標としています。
本稿では,1)表現レベルでの忘れを克服するために,敵の例を活用すること,2)不必要な情報を伝播するネットワークパラメータをピンポイントする重み付け指標を活用すること,の2つの方法を提案する。
論文 参考訳(メタデータ) (2023-01-27T07:53:50Z) - Forget Unlearning: Towards True Data-Deletion in Machine Learning [18.656957502454592]
アンラーニングはデータ削除と同等ではなく、「忘れられる権利」を保証していないことを示す。
本稿では,オンライン環境での精度,計算効率,セキュアなデータ削除機械学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-17T10:06:11Z) - Algorithms that Approximate Data Removal: New Results and Limitations [2.6905021039717987]
本研究では,経験的リスク最小化を用いて学習した機械学習モデルからユーザデータを削除することの問題点について検討する。
計算とメモリ効率を両立させるオンラインアンラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-09-25T17:20:33Z) - SSSE: Efficiently Erasing Samples from Trained Machine Learning Models [103.43466657962242]
サンプル消去のための効率的かつ効率的なアルゴリズムSSSEを提案する。
ある場合、SSSEは、許可されたデータだけで新しいモデルをスクラッチからトレーニングする最適な、しかし実用的でない金の標準と同様に、サンプルをほぼ消去することができる。
論文 参考訳(メタデータ) (2021-07-08T14:17:24Z) - Certifiable Machine Unlearning for Linear Models [1.484852576248587]
機械学習は、トレーニングされたトレーニングデータのサブセットが削除された後、機械学習(ML)モデルを更新するタスクである。
本稿では,線形モデルに対する3つの非学習手法について実験的に検討する。
論文 参考訳(メタデータ) (2021-06-29T05:05:58Z) - Approximate Data Deletion from Machine Learning Models [31.689174311625084]
トレーニングされた機械学習(ML)モデルからデータを削除することは、多くのアプリケーションにおいて重要なタスクである。
線形モデルとロジスティックモデルに対する近似的削除法を提案する。
また,MLモデルからのデータ削除の完全性を評価するための機能注入テストも開発した。
論文 参考訳(メタデータ) (2020-02-24T05:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。