論文の概要: Comparative Study of Inference Methods for Interpolative Decomposition
- arxiv url: http://arxiv.org/abs/2206.14542v1
- Date: Wed, 29 Jun 2022 11:37:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-01 00:35:32.126152
- Title: Comparative Study of Inference Methods for Interpolative Decomposition
- Title(参考訳): 補間分解における推論法の比較検討
- Authors: Jun Lu
- Abstract要約: 補間分解(ID)学習のための自動関係決定(ARD)を用いた確率モデルを提案する。
CCLE $EC50$, CCLE $IC50$, Gene Body Methylation, promoteder Methylation datasets with different size, and dimensions。
- 参考スコア(独自算出の注目度): 4.913248451323163
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a probabilistic model with automatic relevance
determination (ARD) for learning interpolative decomposition (ID), which is
commonly used for low-rank approximation, feature selection, and identifying
hidden patterns in data, where the matrix factors are latent variables
associated with each data dimension. Prior densities with support on the
specified subspace are used to address the constraint for the magnitude of the
factored component of the observed matrix. Bayesian inference procedure based
on Gibbs sampling is employed. We evaluate the model on a variety of real-world
datasets including CCLE $EC50$, CCLE $IC50$, Gene Body Methylation, and
Promoter Methylation datasets with different sizes, and dimensions, and show
that the proposed Bayesian ID algorithms with automatic relevance determination
lead to smaller reconstructive errors even compared to vanilla Bayesian ID
algorithms with fixed latent dimension set to matrix rank.
- Abstract(参考訳): 本稿では,低位近似や特徴選択,データ内の隠れパターンの同定によく用いられる補間分解(interpolative decomposition:id)を学習するための,行列因子が各データ次元に関連づけられた潜在変数である確率的モデルを提案する。
指定された部分空間に対する支持を持つ事前密度は、観測行列の因子成分の大きさの制約に対処するために用いられる。
ギブスサンプリングに基づくベイズ推定手法を用いる。
ccle $ec50$, ccle $ic50$, gene body methylation, promoter methylation datasets with different sizes and dimensionなど,様々な実世界のデータセット上でモデルを評価した結果, 提案手法が自動的適合性判定によるベイジアンidアルゴリズムを行列ランクに固定されたバニラベイジアンidアルゴリズムと比較しても, 再構成誤差が小さいことがわかった。
関連論文リスト
- Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
本稿では,関節のPMFを推定し,そのランクを観測データから自動的に推定する新しい枠組みを提案する。
我々は、様々なモデルパラメータの後方分布を近似するために、変分推論(VI)に基づく決定論的解を導出し、さらに、変分推論(SVI)を利用して、VVIベースのアプローチのスケーラブルバージョンを開発する。
合成データと実映画レコメンデーションデータの両方を含む実験は、推定精度、自動ランク検出、計算効率の点で、VVIおよびSVIベースの手法の利点を示している。
論文 参考訳(メタデータ) (2024-10-08T20:07:49Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
因果モデルでは、観測データから変数間の因果関係を解き明かそうとしている。
本稿では,変数が線形に疎結合な関係を示す設定のための新しい因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-02T04:01:38Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
本稿では,Mixing Model Stiefel Adaptation (MSA)と呼ばれる時系列データに対する新しいドメイン適応手法を提案する。
我々は、ドメイン間の等価な信号分散とペアの対応を確立することにより、ターゲット領域における豊富なラベルのないデータを利用して効果的な予測を行う。
MSAは、Cam-CANデータセットのMEG信号を用いて、タスクの変動を伴う脳年齢回帰の最近の手法より優れている。
論文 参考訳(メタデータ) (2024-01-24T19:04:49Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Feature Selection via the Intervened Interpolative Decomposition and its
Application in Diversifying Quantitative Strategies [4.913248451323163]
本稿では,観測行列の各列がそれぞれの優先度や重要性を持つ補間分解(ID)を計算するための確率論的モデルを提案する。
提案したモデルを,中国A株10株を含む実世界のデータセット上で評価した。
論文 参考訳(メタデータ) (2022-09-29T03:36:56Z) - Non-Negative Matrix Factorization with Scale Data Structure Preservation [23.31865419578237]
本稿では,データ表現と次元縮小のために設計された非負行列分解法に属するモデルについて述べる。
この考え方は、NMFコスト関数に、元のデータポイントと変換されたデータポイントのペアの類似度行列のスケール関係を課すペナルティ項を追加することである。
提案したクラスタリングアルゴリズムは,既存のNMFベースのアルゴリズムや,実際のデータセットに適用した場合の多様体学習ベースのアルゴリズムと比較される。
論文 参考訳(メタデータ) (2022-09-22T09:32:18Z) - Bayesian Low-Rank Interpolative Decomposition for Complex Datasets [4.913248451323163]
本稿では,特徴選択,低ランク近似,データ中の隠れパターンの同定によく用いられる補間分解(ID)の確率モデルを提案する。
我々は,CCLE EC50,CCLE IC50,CTRP EC50,MovieLens 100Kデータセットなど,さまざまな実世界のデータセット上でモデルを評価した。
論文 参考訳(メタデータ) (2022-05-30T03:06:48Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。