論文の概要: Hidden Parameter Recurrent State Space Models For Changing Dynamics
Scenarios
- arxiv url: http://arxiv.org/abs/2206.14697v1
- Date: Wed, 29 Jun 2022 14:54:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-30 22:51:18.257585
- Title: Hidden Parameter Recurrent State Space Models For Changing Dynamics
Scenarios
- Title(参考訳): 動的シナリオ変更のための隠れパラメータリカレント状態空間モデル
- Authors: Vaisakh Shaj, Dieter Buchler, Rohit Sonker, Philipp Becker, Gerhard
Neumann
- Abstract要約: リカレントステートスペースモデルは、動的が固定され、変化しないと仮定するが、これは現実のシナリオではめったにない。
隠れ再帰状態空間モデル(Hidden Recurrent State Space Models, HiP-RSSMs)は, 低次元の潜伏因子の集合で関連する力学系のファミリーをパラメータ化するフレームワークである。
HiP-RSSMsは、実世界のシステムとシミュレーションの両方において、いくつかの挑戦的なロボットベンチマークにおいて、RSSMsや競合するマルチタスクモデルよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 16.94687242653708
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recurrent State-space models (RSSMs) are highly expressive models for
learning patterns in time series data and system identification. However, these
models assume that the dynamics are fixed and unchanging, which is rarely the
case in real-world scenarios. Many control applications often exhibit tasks
with similar but not identical dynamics which can be modeled as a latent
variable. We introduce the Hidden Parameter Recurrent State Space Models
(HiP-RSSMs), a framework that parametrizes a family of related dynamical
systems with a low-dimensional set of latent factors. We present a simple and
effective way of learning and performing inference over this Gaussian graphical
model that avoids approximations like variational inference. We show that
HiP-RSSMs outperforms RSSMs and competing multi-task models on several
challenging robotic benchmarks both on real-world systems and simulations.
- Abstract(参考訳): リカレントステートスペースモデル(Recurrent State-space Model, RSSMs)は、時系列データとシステム識別におけるパターンの学習モデルである。
しかし、これらのモデルは力学が固定され、変化しないと仮定し、現実のシナリオではまれである。
多くの制御アプリケーションはよく類似しているが、潜在変数としてモデル化できる同一の動的タスクを示す。
隠れパラメータ再帰状態空間モデル(hip-rssms, hidden parameter recurrent state space model)を導入する。
本稿では,このガウス図形モデルに対して,変分推論のような近似を避けるための,単純かつ効果的な学習方法を提案する。
ヒップrssmは実世界のシステムとシミュレーションの両方でいくつかの挑戦的なロボットベンチマークでrssmと競合するマルチタスクモデルよりも優れています。
関連論文リスト
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
FSCIL(Few-shot class-incremental Learning)は、最小限のトレーニングサンプルを持つモデルに新しいクラスを統合するという課題に直面している。
従来の手法では、固定パラメータ空間に依存する静的適応を広く採用し、逐次到着するデータから学習する。
本稿では、動的適応のための中間特徴に基づいてプロジェクションパラメータを動的に調整する2つの選択型SSMプロジェクタを提案する。
論文 参考訳(メタデータ) (2024-07-08T17:09:39Z) - Learning System Dynamics without Forgetting [60.08612207170659]
未知の力学を持つ系の軌道予測は、物理学や生物学を含む様々な研究分野において重要である。
本稿では,モードスイッチンググラフODE (MS-GODE) の新たなフレームワークを提案する。
生体力学の異なる多様な系を特徴とする生体力学システムの新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-06-30T14:55:18Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
論文 参考訳(メタデータ) (2023-07-21T14:25:06Z) - Neural Continuous-Discrete State Space Models for Irregularly-Sampled
Time Series [18.885471782270375]
NCDSSMは補助変数を用いて力学からの認識をアンタングルし、補助変数のみに償却推論を必要とする。
本稿では、潜在力学の3つのフレキシブルパラメータ化と、推論中の動的状態の辺りを生かした効率的な学習目標を提案する。
複数のベンチマークデータセットの実証結果は、既存のモデルよりもNCDSSMの計算性能と予測性能が改善されたことを示している。
論文 参考訳(メタデータ) (2023-01-26T18:45:04Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
特異モデルからサブモデルを抽出する手法を提案する。
本手法はトレーニング中のモデルの識別性を強制する。
この手法がディープニューラルネットワークのようなより複雑なモデルにどのように適用できるかを示す。
論文 参考訳(メタデータ) (2022-06-17T07:50:22Z) - Action-Conditional Recurrent Kalman Networks For Forward and Inverse
Dynamics Learning [17.80270555749689]
ロボットのモデルベース制御において、正確な前方および逆ダイナミクスモデルの推定が重要な要素である。
本稿では,フォワードモデル学習のためのアーキテクチャと,逆モデル学習のためのアーキテクチャを提案する。
どちらのアーキテクチャも、予測性能の点で、既存のモデル学習フレームワークと分析モデルを大きく上回っている。
論文 参考訳(メタデータ) (2020-10-20T11:28:25Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
モジュール構造とテンポラル構造の両方を同時に活用できる動的構造を利用するための一歩を踏み出します。
我々のモデルは利用可能なビューの数に対して堅牢であり、追加のトレーニングなしで新しいタスクに一般化できる。
論文 参考訳(メタデータ) (2020-07-13T17:44:30Z) - Prediction with Approximated Gaussian Process Dynamical Models [7.678864239473703]
我々はマルコフであるGPDMを近似し、その制御理論的性質を解析する。
結果は、近似モデルのパワーを示す数値的な例で示される。
論文 参考訳(メタデータ) (2020-06-25T16:51:17Z) - Relational State-Space Model for Stochastic Multi-Object Systems [24.234120525358456]
本稿では、逐次階層型潜在変数モデルであるリレーショナル状態空間モデル(R-SSM)を紹介する。
R-SSMはグラフニューラルネットワーク(GNN)を用いて、複数の相関オブジェクトの結合状態遷移をシミュレートする。
R-SSMの実用性は、合成および実時間時系列データセットで実証的に評価される。
論文 参考訳(メタデータ) (2020-01-13T03:45:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。