論文の概要: Learning minimal representations of stochastic processes with
variational autoencoders
- arxiv url: http://arxiv.org/abs/2307.11608v2
- Date: Fri, 4 Aug 2023 12:40:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-07 15:21:16.485857
- Title: Learning minimal representations of stochastic processes with
variational autoencoders
- Title(参考訳): 変分オートエンコーダを用いた確率過程の最小表現の学習
- Authors: Gabriel Fern\'andez-Fern\'andez, Carlo Manzo, Maciej Lewenstein,
Alexandre Dauphin, Gorka Mu\~noz-Gil
- Abstract要約: プロセスを記述するのに必要なパラメータの最小セットを決定するために、教師なしの機械学習アプローチを導入する。
我々の手法はプロセスを記述する未知のパラメータの自律的な発見を可能にする。
- 参考スコア(独自算出の注目度): 52.99137594502433
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stochastic processes have found numerous applications in science, as they are
broadly used to model a variety of natural phenomena. Due to their intrinsic
randomness and uncertainty, they are however difficult to characterize. Here,
we introduce an unsupervised machine learning approach to determine the minimal
set of parameters required to effectively describe the dynamics of a stochastic
process. Our method builds upon an extended $\beta$-variational autoencoder
architecture. By means of simulated datasets corresponding to paradigmatic
diffusion models, we showcase its effectiveness in extracting the minimal
relevant parameters that accurately describe these dynamics. Furthermore, the
method enables the generation of new trajectories that faithfully replicate the
expected stochastic behavior. Overall, our approach enables for the autonomous
discovery of unknown parameters describing stochastic processes, hence
enhancing our comprehension of complex phenomena across various fields.
- Abstract(参考訳): 確率過程は、様々な自然現象をモデル化するために広く用いられるので、科学において多くの応用を見出している。
しかし、本質的なランダム性と不確実性のため、特徴付けは困難である。
本稿では,確率過程のダイナミクスを効果的に記述するために必要なパラメータの最小セットを決定するために,教師なし機械学習手法を提案する。
我々の手法は拡張された$\beta$-variational autoencoderアーキテクチャに基づいている。
パラダイム拡散モデルに対応するシミュレーションデータセットを用いて、これらのダイナミクスを正確に記述する最小限のパラメータを抽出する効果を示す。
さらに、期待された確率挙動を忠実に再現する新たな軌跡を生成することができる。
全体としては,確率過程を記述する未知のパラメータを自律的に発見することで,様々な分野にまたがる複雑な現象の理解を深める。
関連論文リスト
- Towards Learning Stochastic Population Models by Gradient Descent [0.0]
パラメータと構造を同時に推定することで,最適化手法に大きな課題が生じることを示す。
モデルの正確な推定を実証するが、擬似的、解釈可能なモデルの推論を強制することは、難易度を劇的に高める。
論文 参考訳(メタデータ) (2024-04-10T14:38:58Z) - Stochastic parameter reduced-order model based on hybrid machine learning approaches [4.378407481656902]
本稿では,畳み込み型オートエンコーダ-貯水池コンピューティング-Normalizing Flowアルゴリズムの枠組みを構築した。
このフレームワークは潜在状態変数の進化を特徴づけるために使われる。
このようにして、複雑なシステムとその動的挙動を記述するために、データ駆動の減階モデルを構築する。
論文 参考訳(メタデータ) (2024-03-24T06:52:37Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
本稿では,部分的な観測を伴う複雑な乱流系の反復学習アルゴリズムを提案する。
モデル構造を識別し、観測されていない変数を復元し、パラメータを推定する。
数値実験により、新しいアルゴリズムはモデル構造を同定し、多くの複雑な非線形系に対して適切なパラメータ化を提供することに成功した。
論文 参考訳(メタデータ) (2022-08-19T00:35:03Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - On Contrastive Representations of Stochastic Processes [53.21653429290478]
プロセスの表現を学習することは、機械学習の新たな問題である。
本手法は,周期関数,3次元オブジェクト,動的プロセスの表現の学習に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-18T11:00:24Z) - ImitationFlow: Learning Deep Stable Stochastic Dynamic Systems by
Normalizing Flows [29.310742141970394]
我々は,世界規模で安定な非線形力学を学習できる新しいDeep生成モデルであるImitationFlowを紹介した。
提案手法の有効性を,標準データセットと実ロボット実験の両方で示す。
論文 参考訳(メタデータ) (2020-10-25T14:49:46Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
経験的最適化は現代の機械学習の中心であるが、その成功における役割はまだ不明である。
分散による離散乗法雑音のパラメータによく現れることを示す。
最新のステップサイズやデータを含む重要な要素について、詳細な分析を行い、いずれも最先端のニューラルネットワークモデルで同様の結果を示す。
論文 参考訳(メタデータ) (2020-06-11T09:58:01Z) - Automatic Differentiation and Continuous Sensitivity Analysis of Rigid
Body Dynamics [15.565726546970678]
剛体力学のための微分可能な物理シミュレータを提案する。
軌道最適化の文脈では、閉ループモデル予測制御アルゴリズムを導入する。
論文 参考訳(メタデータ) (2020-01-22T03:54:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。