論文の概要: Efficient Trajectory Inference in Wasserstein Space Using Consecutive Averaging
- arxiv url: http://arxiv.org/abs/2405.19679v1
- Date: Thu, 30 May 2024 04:19:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 18:06:52.737201
- Title: Efficient Trajectory Inference in Wasserstein Space Using Consecutive Averaging
- Title(参考訳): 近似平均化を用いたワッサーシュタイン空間の効率的な軌道推定
- Authors: Amartya Banerjee, Harlin Lee, Nir Sharon, Caroline Moosmüller,
- Abstract要約: 軌道推論は、そのような観測から連続的な過程を再構築する挑戦を扱う。
ワッサーシュタイン空間に直交する連続平均化による点雲のB-スプライン近似法を提案する。
コンバージェンス保証を提供し、シミュレーションセルデータ上でテストすることで、我々の手法を厳格に評価する。
- 参考スコア(独自算出の注目度): 3.8623569699070353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Capturing data from dynamic processes through cross-sectional measurements is seen in many fields such as computational biology. Trajectory inference deals with the challenge of reconstructing continuous processes from such observations. In this work, we propose methods for B-spline approximation and interpolation of point clouds through consecutive averaging that is instrinsic to the Wasserstein space. Combining subdivision schemes with optimal transport-based geodesic, our methods carry out trajectory inference at a chosen level of precision and smoothness, and can automatically handle scenarios where particles undergo division over time. We rigorously evaluate our method by providing convergence guarantees and testing it on simulated cell data characterized by bifurcations and merges, comparing its performance against state-of-the-art trajectory inference and interpolation methods. The results not only underscore the effectiveness of our method in inferring trajectories, but also highlight the benefit of performing interpolation and approximation that respect the inherent geometric properties of the data.
- Abstract(参考訳): 計算生物学などの多くの分野において、動的プロセスから断面積の測定を通じてデータをキャプチャする。
軌道推論は、そのような観測から連続的な過程を再構築する挑戦を扱う。
本研究では、ワッサーシュタイン空間に直交する連続平均化による点雲のB-スプライン近似と補間法を提案する。
提案手法は, 最適輸送に基づく測地法と組み合わせて, 選択された精度と滑らか度で軌道推定を行い, 時間とともに粒子が分裂するシナリオを自動的に処理する。
本手法は,両分岐とマージを特徴とするシミュレーションセルデータに対して収束保証を提供し,その性能を最先端の軌道推定と補間法と比較することにより,厳密に評価する。
その結果,トラジェクトリを推定する上での手法の有効性だけでなく,データ固有の幾何学的性質を尊重する補間や近似を行うことのメリットも浮き彫りにした。
関連論文リスト
- Beyond Flatland: A Geometric Take on Matching Methods for Treatment Effect Estimation [6.4527669089403155]
本稿では,既存の因果機構によって誘導される内在データ幾何を考慮した治療効果を推定するマッチング手法を提案する。
我々は、GeoMatchingがより効果的に治療効果を推定できることを示す、合成および実世界のシナリオにおける理論的洞察と実証結果を提供する。
論文 参考訳(メタデータ) (2024-09-09T09:39:47Z) - Spatially-Aware Diffusion Models with Cross-Attention for Global Field Reconstruction with Sparse Observations [1.371691382573869]
フィールド再構成タスクにおけるスコアベース拡散モデルの開発と拡張を行う。
本研究では,観測領域と観測領域の間のトラクタブルマッピングを構築するための条件符号化手法を提案する。
本研究では, モデルが再現可能かどうかを把握し, 融合結果の精度を向上する能力を示す。
論文 参考訳(メタデータ) (2024-08-30T19:46:23Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
数理推論におけるOOD検出にトラジェクトリボラティリティを用いたトラジェクトリベースのTVスコアを提案する。
本手法は, 数学的推論シナリオ下でのGLM上での従来のアルゴリズムよりも優れる。
提案手法は,複数選択質問などの出力空間における高密度特徴を持つアプリケーションに拡張することができる。
論文 参考訳(メタデータ) (2024-05-22T22:22:25Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
本論文では,乗算器の交互方向法に基づく分散サンプリング手法を提案する。
我々は,アルゴリズムの収束に関する理論的保証と,その最先端性に関する実験的証拠の両方を提供する。
シミュレーションでは,線形回帰タスクとロジスティック回帰タスクにアルゴリズムを配置し,その高速収束を既存の勾配法と比較した。
論文 参考訳(メタデータ) (2024-01-29T02:08:40Z) - Efficient Large-scale Nonstationary Spatial Covariance Function
Estimation Using Convolutional Neural Networks [3.5455896230714194]
非定常データからサブリージョンを導出するためにConvNetsを使用します。
定常場に類似した振る舞いを示す部分領域を同定するために選択機構を用いる。
提案手法の性能を大規模に評価する。
論文 参考訳(メタデータ) (2023-06-20T12:17:46Z) - Score-based Data Assimilation [7.215767098253208]
軌道推定のためのスコアベースのデータ同化を導入する。
我々は、任意の長さの軌道のスコアを、短いセグメントにまたがって一連のスコアに分解できるというキーインサイトに基づいて、状態軌道のスコアに基づく生成モデルを学ぶ。
論文 参考訳(メタデータ) (2023-06-18T14:22:03Z) - A Heat Diffusion Perspective on Geodesic Preserving Dimensionality
Reduction [66.21060114843202]
熱測地線埋め込みと呼ばれるより一般的な熱カーネルベースの多様体埋め込み法を提案する。
その結果,本手法は,地中真理多様体距離の保存において,既存の技術よりも優れていることがわかった。
また,連続体とクラスタ構造を併用した単一セルRNAシークエンシングデータセットに本手法を適用した。
論文 参考訳(メタデータ) (2023-05-30T13:58:50Z) - Positive definite nonparametric regression using an evolutionary
algorithm with application to covariance function estimation [0.0]
定常過程の共分散関数を推定するための新しい非パラメトリック回帰フレームワークを提案する。
提案手法は, 正定性, 等方性, 単調性を推定者に課すことができる。
提案手法は,長距離依存に対する信頼性の高い推定値を提供する。
論文 参考訳(メタデータ) (2023-04-25T22:01:14Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。