論文の概要: Multiclass-SGCN: Sparse Graph-based Trajectory Prediction with Agent
Class Embedding
- arxiv url: http://arxiv.org/abs/2206.15275v1
- Date: Thu, 30 Jun 2022 13:28:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-01 14:43:52.574938
- Title: Multiclass-SGCN: Sparse Graph-based Trajectory Prediction with Agent
Class Embedding
- Title(参考訳): multiclass-sgcn:エージェントクラス埋め込みによるスパースグラフに基づく軌道予測
- Authors: Ruochen Li, Stamos Katsigiannis, Hubert P. H. Shum
- Abstract要約: 現実シナリオにおける道路利用者の軌道予測は,移動パターンが複雑であるため困難である。
従来の歩行者指向の作業は、歩行者間の複雑な相互作用のモデル化に成功しているが、他の種類の道路利用者が関与している場合の軌道予測には失敗している。
マルチクラス軌道予測のためのスパースグラフ畳み込みネットワークアプローチであるMulticlass-SGCNを提案する。
- 参考スコア(独自算出の注目度): 12.839645409931407
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Trajectory prediction of road users in real-world scenarios is challenging
because their movement patterns are stochastic and complex. Previous
pedestrian-oriented works have been successful in modelling the complex
interactions among pedestrians, but fail in predicting trajectories when other
types of road users are involved (e.g., cars, cyclists, etc.), because they
ignore user types. Although a few recent works construct densely connected
graphs with user label information, they suffer from superfluous spatial
interactions and temporal dependencies. To address these issues, we propose
Multiclass-SGCN, a sparse graph convolution network based approach for
multi-class trajectory prediction that takes into consideration velocity and
agent label information and uses a novel interaction mask to adaptively decide
the spatial and temporal connections of agents based on their interaction
scores. The proposed approach significantly outperformed state-of-the-art
approaches on the Stanford Drone Dataset, providing more realistic and
plausible trajectory predictions.
- Abstract(参考訳): 現実シナリオにおける道路利用者の軌道予測は,移動パターンが確率的かつ複雑であるため困難である。
歩行者の複雑な相互作用をモデル化する以前の歩行者指向の作業は成功しているが、他の種類の道路利用者(車、サイクリストなど)が関与している場合の軌道予測には失敗している。
最近のいくつかの作品は、ユーザーラベル情報を持つ密結合グラフを構築しているが、それらは余分な空間的相互作用と時間的依存関係に苦しむ。
そこで本研究では,速度とエージェントラベル情報を考慮したマルチクラス軌道予測のための疎グラフ畳み込みネットワークであるmulticlass-sgcnを提案し,そのインタラクションスコアに基づいてエージェントの空間的・時間的接続を適応的に決定する新しいインタラクションマスクを提案する。
提案手法はスタンフォード・ドローン・データセットにおける最先端のアプローチを著しく上回り、より現実的で妥当な軌道予測を提供する。
関連論文リスト
- AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
本稿では,GPT方式の次のトークン動作予測を動作予測に導入する。
同種単位-ワードからなる言語データとは異なり、運転シーンの要素は複雑な空間的・時間的・意味的な関係を持つ可能性がある。
そこで本稿では,情報集約と位置符号化スタイルの異なる3つの因子化アテンションモジュールを用いて,それらの関係を捉えることを提案する。
論文 参考訳(メタデータ) (2024-03-20T06:22:37Z) - Deep Interactive Motion Prediction and Planning: Playing Games with
Motion Prediction Models [162.21629604674388]
本研究は,新しい対話型マルチエージェントニューラルネットワークポリシを予測モデルの一部として使用するゲーム理論モデル予測制御器(MPC)を提案する。
本手法の成功の基礎は,周辺エージェントの状態と地図情報に基づいて車両を操縦できる,新しいマルチエージェントポリシーネットワークの設計である。
論文 参考訳(メタデータ) (2022-04-05T17:58:18Z) - You Mostly Walk Alone: Analyzing Feature Attribution in Trajectory
Prediction [52.442129609979794]
軌道予測のための最近の深層学習手法は有望な性能を示す。
そのようなブラックボックスモデルが実際にどのモデルを予測するために使うのかは、まだ不明である。
本稿では,モデル性能に対する異なるキューの貢献度を定量化する手法を提案する。
論文 参考訳(メタデータ) (2021-10-11T14:24:15Z) - Semantics-STGCNN: A Semantics-guided Spatial-Temporal Graph
Convolutional Network for Multi-class Trajectory Prediction [9.238700679836855]
グラフ畳み込みニューラルネットワークにクラス情報を導入し、個人の軌道をより正確に予測する。
AADE(Average2 Displacement Error)とaFDE(Average Final Deplacement Error)と呼ばれる新しいメトリクスを提案する。
既存のメトリクスや新しく提案されたメトリクスの最先端よりも、一貫して優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2021-08-10T15:02:50Z) - Learning Sparse Interaction Graphs of Partially Observed Pedestrians for
Trajectory Prediction [0.3025231207150811]
マルチペデストリアン軌道予測は、非構造環境における群衆と相互作用する自律システムの必然的な安全要素である。
Gumbel Social Transformerを提案し、Edge Gumbel Selectorは、各ステップで部分的に観察された歩行者のスパースグラフをサンプリングする。
提案手法は,仮定によって生じる潜在的な問題を克服し,ベンチマーク評価における関連研究よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-15T00:45:11Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Spatial-Temporal Block and LSTM Network for Pedestrian Trajectories
Prediction [0.0]
本稿では,軌道予測のためのLSTMに基づく新しいアルゴリズムを提案する。
我々は静的なシーンと歩行者を考慮することでこの問題に対処する。
この関係を符号化したのはLSTMであり,我々のモデルは群集シナリオにおけるノードの軌跡を同時に予測する。
論文 参考訳(メタデータ) (2020-09-22T11:43:40Z) - AMENet: Attentive Maps Encoder Network for Trajectory Prediction [35.22312783822563]
軌道予測は、安全な将来の動きを計画するための応用に不可欠である。
我々は Attentive Maps Network (AMENet) というエンドツーエンド生成モデルを提案する。
AMENetはエージェントの動作と相互作用情報をエンコードし、高精度でリアルなマルチパス軌道予測を行う。
論文 参考訳(メタデータ) (2020-06-15T10:00:07Z) - VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized
Representation [74.56282712099274]
本稿では,ベクトルで表される個々の道路成分の空間的局所性を利用する階層型グラフニューラルネットワークであるVectorNetを紹介する。
ベクトル化高定義(HD)マップとエージェントトラジェクトリの操作により、ロッキーなレンダリングや計算集約的なConvNetエンコーディングのステップを避けることができる。
我々は、社内行動予測ベンチマークと最近リリースされたArgoverse予測データセットでVectorNetを評価した。
論文 参考訳(メタデータ) (2020-05-08T19:07:03Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。