論文の概要: "Explanation" is Not a Technical Term: The Problem of Ambiguity in XAI
- arxiv url: http://arxiv.org/abs/2207.00007v1
- Date: Mon, 27 Jun 2022 21:42:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-10 12:43:14.676247
- Title: "Explanation" is Not a Technical Term: The Problem of Ambiguity in XAI
- Title(参考訳): 解説」は技術的用語ではない:XAIにおける曖昧さの問題
- Authors: Leilani H. Gilpin, Andrew R. Paley, Mohammed A. Alam, Sarah Spurlock,
Kristian J. Hammond
- Abstract要約: 本稿では,これらの特徴を実用性評価に利用する方法について検討する。
我々は,機能的役割によって定義された説明の要件,理解しようとするユーザの知識状態,それらの生成に必要な情報の提供に焦点をあてる。
- 参考スコア(独自算出の注目度): 2.5899040911480173
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: There is broad agreement that Artificial Intelligence (AI) systems,
particularly those using Machine Learning (ML), should be able to "explain"
their behavior. Unfortunately, there is little agreement as to what constitutes
an "explanation." This has caused a disconnect between the explanations that
systems produce in service of explainable Artificial Intelligence (XAI) and
those explanations that users and other audiences actually need, which should
be defined by the full spectrum of functional roles, audiences, and
capabilities for explanation. In this paper, we explore the features of
explanations and how to use those features in evaluating their utility. We
focus on the requirements for explanations defined by their functional role,
the knowledge states of users who are trying to understand them, and the
availability of the information needed to generate them. Further, we discuss
the risk of XAI enabling trust in systems without establishing their
trustworthiness and define a critical next step for the field of XAI to
establish metrics to guide and ground the utility of system-generated
explanations.
- Abstract(参考訳): 人工知能(AI)システム、特に機械学習(ML)を使用しているシステムは、その振る舞いを"説明"できるべきだという広い合意がある。
残念ながら、「説明」を構成するものについてはほとんど合意が得られていない。
このことは、システムが説明可能な人工知能(XAI)を運用しているという説明と、ユーザや他のオーディエンスが実際に必要とする説明とを、機能的な役割、オーディエンス、説明能力の完全な範囲で定義するべきものである。
本稿では,説明の特徴と,それらの機能を有用性評価に利用する方法について検討する。
我々は,機能的役割によって定義された説明の要件,理解しようとするユーザの知識状態,それらの生成に必要な情報の提供に焦点をあてる。
また,XAIの信頼性を確立せずにシステムへの信頼を可能にするリスクについて論じ,システム生成説明の有用性の指針と基礎となる指標を確立する上で,XAI分野にとって重要な次のステップを定義する。
関連論文リスト
- An Ontology-Enabled Approach For User-Centered and Knowledge-Enabled Explanations of AI Systems [0.3480973072524161]
説明可能性に関する最近の研究は、AIモデルやモデル説明可能性の動作を説明することに重点を置いている。
この論文は、モデルとユーザ中心の説明可能性の間のギャップを埋めようとしている。
論文 参考訳(メタデータ) (2024-10-23T02:03:49Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Rethinking Explainability as a Dialogue: A Practitioner's Perspective [57.87089539718344]
医師、医療専門家、政策立案者に対して、説明を求めるニーズと欲求について尋ねる。
本研究は, 自然言語対話の形での対話的説明を, 意思決定者が強く好むことを示唆する。
これらのニーズを考慮して、インタラクティブな説明を設計する際に、研究者が従うべき5つの原則を概説する。
論文 参考訳(メタデータ) (2022-02-03T22:17:21Z) - Making Things Explainable vs Explaining: Requirements and Challenges
under the GDPR [2.578242050187029]
ExplanatorY AI(YAI)はXAI上に構築され、説明可能な情報の収集と整理を目的としている。
本稿では,自動意思決定システム(ADM)について,説明空間上の適切な経路を特定するための説明を生成する問題について述べる。
論文 参考訳(メタデータ) (2021-10-02T08:48:47Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Explanation Ontology: A Model of Explanations for User-Centered AI [3.1783442097247345]
説明はしばしば、原則的でないポストホックな方法でAIシステムに追加されている。
これらのシステムの採用が拡大し、ユーザ中心の説明可能性に重点を置いているため、説明可能性について第一の考慮事項として扱う構造的表現が必要である。
我々は,説明の役割,システムとユーザ属性の双方をモデル化するための説明オントロジーを設計し,異なる文献に基づく説明型の範囲を設計する。
論文 参考訳(メタデータ) (2020-10-04T03:53:35Z) - Explainability in Deep Reinforcement Learning [68.8204255655161]
説明可能な強化学習(XRL)の実現に向けての最近の成果を概観する。
エージェントの振る舞いを正当化し、説明することが不可欠である重要な状況において、RLモデルのより良い説明可能性と解釈性は、まだブラックボックスと見なされているものの内部動作に関する科学的洞察を得るのに役立つ。
論文 参考訳(メタデータ) (2020-08-15T10:11:42Z) - Directions for Explainable Knowledge-Enabled Systems [3.7250420821969827]
我々は、人工知能と密接に関連する分野における説明文献の調査を活用して、一連の説明型を生成する。
それぞれの型を定義し、このスタイルの説明の必要性を動機付けるサンプル質問を提供します。
この一連の説明型は、将来のシステム設計者が要求の生成と優先順位付けに役立ちます。
論文 参考訳(メタデータ) (2020-03-17T04:34:29Z) - Foundations of Explainable Knowledge-Enabled Systems [3.7250420821969827]
本稿では,説明可能な人工知能システムの歴史的概要を紹介する。
我々は、エキスパートシステム、認知アシスタント、セマンティックアプリケーション、機械学習ドメインにまたがる知識対応システムに焦点を当てる。
説明可能な知識対応システムと説明可能な知識対応システムについて,新たな定義を提案する。
論文 参考訳(メタデータ) (2020-03-17T04:18:48Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。