Automated Quantum Circuit Design with Nested Monte Carlo Tree Search
- URL: http://arxiv.org/abs/2207.00132v1
- Date: Fri, 1 Jul 2022 00:30:01 GMT
- Title: Automated Quantum Circuit Design with Nested Monte Carlo Tree Search
- Authors: Pei-Yong Wang, Muhammad Usman, Udaya Parampalli, Lloyd C. L.
Hollenberg and Casey R. Myers
- Abstract summary: Quantum algorithms based on variational approaches are one of the most promising methods to construct quantum solutions.
Despite the adaptability and simplicity, their scalability and the selection of suitable ans"atzs remain key challenges.
- Score: 3.2828784290497848
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum algorithms based on variational approaches are one of the most
promising methods to construct quantum solutions and have found a myriad of
applications in the last few years. Despite the adaptability and simplicity,
their scalability and the selection of suitable ans\"atzs remain key
challenges. In this work, we report an algorithmic framework based on nested
Monte-Carlo Tree Search (MCTS) coupled with the combinatorial multi-armed
bandit (CMAB) model for the automated design of quantum circuits. Through
numerical experiments, we demonstrated our algorithm applied to various kinds
of problems, including the ground energy problem in quantum chemistry, quantum
optimisation on a graph, solving systems of linear equations, and finding
encoding circuit for quantum error detection codes. Compared to the existing
approaches, the results indicate that our circuit design algorithm can explore
larger search spaces and optimise quantum circuits for larger systems, showing
both versatility and scalability.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Hybrid quantum-classical and quantum-inspired classical algorithms for
solving banded circulant linear systems [0.8192907805418583]
We present an efficient algorithm based on convex optimization of combinations of quantum states to solve for banded circulant linear systems.
By decomposing banded circulant matrices into cyclic permutations, our approach produces approximate solutions to such systems with a combination of quantum states linear to $K$.
We validate our methods with classical simulations and actual IBM quantum computer implementation, showcasing their applicability for solving physical problems such as heat transfer.
arXiv Detail & Related papers (2023-09-20T16:27:16Z) - Sub-universal variational circuits for combinatorial optimization
problems [0.0]
This work introduces a novel class of classical probabilistic circuits designed for generating quantum approximate solutions to optimization problems constructed using two-bit matrices.
Through a numerical study, we investigate the performance of our proposed variational circuits in solving the Max-Cut problem on various graphs of increasing sizes.
Our findings suggest that evaluating the performance of quantum variational circuits against variational circuits with sub-universal gate sets is a valuable benchmark for identifying areas where quantum variational circuits can excel.
arXiv Detail & Related papers (2023-08-29T02:16:48Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
We propose a hybrid quantum-classical algorithm to compute approximate solutions of binary problems.
We employ a shallow-depth quantum circuit to implement a unitary and Hermitian operator that block-encodes the weighted maximum cut or the Ising Hamiltonian.
Measuring the expectation of this operator on a variational quantum state yields the variational energy of the quantum system.
arXiv Detail & Related papers (2023-06-10T23:28:13Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Differentiable Quantum Architecture Search [15.045985536395479]
We propose a general framework of differentiable quantum architecture search (DQAS)
DQAS enables automated designs of quantum circuits in an end-to-end differentiable fashion.
arXiv Detail & Related papers (2020-10-16T18:00:03Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
We review and extend the application of deep learning to quantum geometric control problems.
We demonstrate enhancements in time-optimal control in the context of quantum circuit synthesis problems.
Our results are of interest to researchers in quantum control and quantum information theory seeking to combine machine learning and geometric techniques for time-optimal control problems.
arXiv Detail & Related papers (2020-06-19T19:12:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.