Sub-universal variational circuits for combinatorial optimization
problems
- URL: http://arxiv.org/abs/2308.14981v1
- Date: Tue, 29 Aug 2023 02:16:48 GMT
- Title: Sub-universal variational circuits for combinatorial optimization
problems
- Authors: Gal Weitz, Lirand\"e Pira, Chris Ferrie, Joshua Combes
- Abstract summary: This work introduces a novel class of classical probabilistic circuits designed for generating quantum approximate solutions to optimization problems constructed using two-bit matrices.
Through a numerical study, we investigate the performance of our proposed variational circuits in solving the Max-Cut problem on various graphs of increasing sizes.
Our findings suggest that evaluating the performance of quantum variational circuits against variational circuits with sub-universal gate sets is a valuable benchmark for identifying areas where quantum variational circuits can excel.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum variational circuits have gained significant attention due to their
applications in the quantum approximate optimization algorithm and quantum
machine learning research. This work introduces a novel class of classical
probabilistic circuits designed for generating approximate solutions to
combinatorial optimization problems constructed using two-bit stochastic
matrices. Through a numerical study, we investigate the performance of our
proposed variational circuits in solving the Max-Cut problem on various graphs
of increasing sizes. Our classical algorithm demonstrates improved performance
for several graph types to the quantum approximate optimization algorithm. Our
findings suggest that evaluating the performance of quantum variational
circuits against variational circuits with sub-universal gate sets is a
valuable benchmark for identifying areas where quantum variational circuits can
excel.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Quantum-Informed Recursive Optimization Algorithms [0.0]
We propose and implement a family of quantum-informed recursive optimization (QIRO) algorithms for optimization problems.
Our approach leverages quantum resources to obtain information that is used in problem-specific classical reduction steps.
We use backtracking techniques to further improve the performance of the algorithm without increasing the requirements on the quantum hardware.
arXiv Detail & Related papers (2023-08-25T18:02:06Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Parallel circuit implementation of variational quantum algorithms [0.0]
We present a method to split quantum circuits of variational quantum algorithms (VQAs) to allow for parallel training and execution.
We apply this specifically to optimization problems, where inherent structures from the problem can be identified.
We show that not only can our method address larger problems, but that it is also possible to run full VQA models while training parameters using only one slice.
arXiv Detail & Related papers (2023-04-06T12:52:29Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - A Comparative Study On Solving Optimization Problems With Exponentially
Fewer Qubits [0.0]
We evaluate and improve an algorithm based on Variational Quantum Eigensolver (VQE)
We highlight the numerical instabilities generated by encoding the problem into the variational ansatz.
We propose a classical optimization procedure to find the ground-state of the ansatz in less iterations with a better objective.
arXiv Detail & Related papers (2022-10-21T08:54:12Z) - Automated Quantum Circuit Design with Nested Monte Carlo Tree Search [3.2828784290497848]
Quantum algorithms based on variational approaches are one of the most promising methods to construct quantum solutions.
Despite the adaptability and simplicity, their scalability and the selection of suitable ans"atzs remain key challenges.
arXiv Detail & Related papers (2022-07-01T00:30:01Z) - Surrogate-based optimization for variational quantum algorithms [0.0]
Variational quantum algorithms are a class of techniques intended to be used on near-term quantum computers.
We introduce the idea of learning surrogate models for variational circuits using few experimental measurements.
We then perform parameter optimization using these models as opposed to the original data.
arXiv Detail & Related papers (2022-04-12T00:15:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.