A complete POVM description of multi-channel quantum electro-optic
sampling with monochromatic field modes
- URL: http://arxiv.org/abs/2207.00490v1
- Date: Fri, 1 Jul 2022 15:25:18 GMT
- Title: A complete POVM description of multi-channel quantum electro-optic
sampling with monochromatic field modes
- Authors: Emanuel Hubenschmid, Thiago L. M. Guedes, Guido Burkard
- Abstract summary: We propose a multi-channel version of quantum electro-optic sampling involving monochromatic field modes.
We show that two consecutive measurements of both $hatX$ and $hatY$ratures can outperform eight-port homodyne detection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a multi-channel version of quantum electro-optic sampling
involving monochromatic field modes. It allows for multiple simultaneous
measurements of arbitrarily many $\hat{X}$ and $\hat{Y}$ field-quadrature for a
single quantum-state copy, while independently tuning the interaction strengths
at each channel. In contrast to standard electro-optic sampling, the sampled
mid-infrared (MIR) mode undergoes a nonlinear interaction with multiple
near-infrared (NIR) pump beams. We present a complete positive operator-valued
measure (POVM) description for quantum states in the MIR mode. The probability
distribution of the electro-optic signal outcomes is shown to be related to an
$s$-parametrized phase-space quasiprobability distribution of the indirectly
measured MIR state, with the parameter $s$ depending solely on the quantities
characterizing the nonlinear interaction. Furthermore, we show that the
quasiprobability distributions for the sampled and post-measurement states are
related to each other through a renormalization and a change in the
parametrization. This result is then used to demonstrate that two consecutive
measurements of both $\hat{X}$ and $\hat{Y}$ quadratures can outperform
eight-port homodyne detection.
Related papers
- Theory of free fermions dynamics under partial post-selected monitoring [49.1574468325115]
We derive a partial post-selected Schrdinger"o equation based on a microscopic description of continuous weak measurement.
We show that the passage to the monitored universality occurs abruptly at finite partial post-selection.
Our approach establishes a way to study MiPTs for arbitrary subsets of quantum trajectories.
arXiv Detail & Related papers (2023-12-21T16:53:42Z) - Interaction-induced transition in quantum many-body detection probability [0.0]
We introduce the concept of quantum many-body detection probability (QMBDP), which refers to the probability of detecting a chosen signal at least once in a given time.
We show that, on tuning some Hamiltonian parameters, there can be sharp transition from a regime where QMBDP $approx 1$, to a regime, where QMBDP $approx 0$.
This is not a measurement-induced transition, but rather a non-equilibrium transition reflecting opening of a specific type of gap in the many-body spectrum.
arXiv Detail & Related papers (2023-06-02T14:55:53Z) - Two-mode squeezing over deployed fiber coexisting with conventional
communications [55.41644538483948]
Multi-mode squeezing is critical for enabling CV quantum networks and distributed quantum sensing.
To date, multi-mode squeezing measured by homodyne detection has been limited to single-room experiments.
This demonstration enables future applications in quantum networks and quantum sensing that rely on distributed multi-mode squeezing.
arXiv Detail & Related papers (2023-04-20T02:29:33Z) - Distributed quantum sensing with optical lattices [0.0]
In distributed quantum sensing the correlations between multiple modes, typically of a photonic system, are utilized to enhance the measurement precision of an unknown parameter.
We show that it can allow for parameter estimation at the Heisenberg limit of $(N(M-1)T)2$, where $N$ is the number of particles, $M$ is the number of modes, and $T$ is the measurement time.
arXiv Detail & Related papers (2022-08-10T03:47:44Z) - Linear Response for pseudo-Hermitian Hamiltonian Systems: Application to
PT-Symmetric Qubits [0.0]
We develop the linear response theory formulation suitable for application to various pHH systems.
We apply our results to two textitPT-symmetric non-Hermitian quantum systems.
arXiv Detail & Related papers (2022-06-18T10:05:30Z) - Interaction of quantum systems with single pulses of quantized radiation [68.8204255655161]
We describe the interaction of a propagating pulse of quantum radiation with a localized quantum system.
By transformation to an appropriate picture, we identify the usual Jaynes-Cummings Hamiltonian between the scatterer and a superposition of the initial and final mode.
The transformed master equation offers important insights into the system dynamics and it permits numerically efficient solutions.
arXiv Detail & Related papers (2022-03-14T20:23:23Z) - Eigenstates of two-level systems in a single-mode quantum field: from
quantum Rabi model to $N$-atom Dicke model [0.0]
We show that the Hamiltonian describing the resonant interaction of $N$ two-level systems with a single-mode electromagnetic quantum field in the Coulomb gauge can be diagonalized with a high degree of accuracy.
arXiv Detail & Related papers (2022-02-07T22:14:13Z) - Multipartite spatial entanglement generated by concurrent nonlinear
processes [91.3755431537592]
Continuous variables multipartite entanglement is a key resource for quantum technologies.
This work considers the multipartite entanglement generated in separated spatial modes of the same light beam by three different parametric sources.
arXiv Detail & Related papers (2021-11-09T17:15:13Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Coherent coupling between multiple ferrimagnetic spheres and a microwave
cavity in the quantum-limit [0.0]
The spin resonance of electrons can be coupled to a microwave cavity mode to obtain a photon-magnon hybrid system.
In this article, the behavior of a large number of ferrimagnetic spheres coupled to a single cavity is put under test.
We show that novel applications of optimally-controlled hybrid systems can be foreseen for setups embedding a large number of samples.
arXiv Detail & Related papers (2020-07-17T11:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.