Experimental Simulation of Loop Quantum Gravity on a Photonic Chip
- URL: http://arxiv.org/abs/2207.00557v1
- Date: Fri, 1 Jul 2022 17:14:30 GMT
- Title: Experimental Simulation of Loop Quantum Gravity on a Photonic Chip
- Authors: Reinier van der Meer, Zichang Huang, Malaquias Correa Anguita, Dongxue
Qu, Peter Hooijschuur, Hongguang Liu, Muxin Han, Jelmer J. Renema, Lior Cohen
- Abstract summary: We experimentally demonstrate quantum simulations of spinfoam amplitudes of Loop Quantum Gravity (LQG) on an integrated photonics quantum processor.
We show that the derived spinfoam amplitude falls within 4% error with respect to the theoretical prediction, despite experimental imperfections.
We also discuss how to generalize the simulation for more complex transitions, in realistic experimental conditions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The unification of general relativity and quantum theory is one of the
fascinating problems of modern physics. One leading solution is Loop Quantum
Gravity (LQG). Simulating LQG may be important for providing predictions which
can then be tested experimentally. However, such complex quantum simulations
cannot run efficiently on classical computers, and quantum computers or
simulators are needed. Here, we experimentally demonstrate quantum simulations
of spinfoam amplitudes of LQG on an integrated photonics quantum processor. We
simulate a basic transition of LQG and show that the derived spinfoam vertex
amplitude falls within 4% error with respect to the theoretical prediction,
despite experimental imperfections. We also discuss how to generalize the
simulation for more complex transitions, in realistic experimental conditions,
which will eventually lead to a quantum advantage demonstration as well as
expand the toolbox to investigate LQG.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
This study presents the theoretical background and the hardware aware circuit implementation of a quantum tunneling simulation.
We use error mitigation techniques (ZNE and REM) and multiprogramming of the quantum chip for solving the hardware under-utilization problem.
arXiv Detail & Related papers (2024-04-10T14:27:07Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum simulation of quantum mechanical system with spatial
noncommutativity [0.0]
We demonstrate the quantum simulation of a quantum mechanical system with spatial noncommutativity.
We use the novel group theoretical formalism to map the Hamiltonian of such a noncommutative quantum system into the ordinary quantum mechanical Hamiltonian.
arXiv Detail & Related papers (2022-11-15T17:51:16Z) - Differentiable matrix product states for simulating variational quantum
computational chemistry [6.954927515599816]
We propose a parallelizable classical simulator for variational quantum eigensolver(VQE)
Our simulator seamlessly integrates the quantum circuit evolution into the classical auto-differentiation framework.
As applications, we use our simulator to study commonly used small molecules such as HF, LiH and H$$O, as well as larger molecules CO$$, BeH$ and H$_4$ with up to $40$ qubits.
arXiv Detail & Related papers (2022-11-15T08:36:26Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z) - Efficient Simulation of Loop Quantum Gravity -- A Scalable
Linear-Optical Approach [0.0]
A leading approach is Loop Quantum Gravity (LQG)
We design a linear-optical simulator such that the evolution of the optical quantum gates simulates the spinfoam amplitudes of LQG.
This work opens a new way to relate quantum gravity to quantum information and will expand our understanding of the theory.
arXiv Detail & Related papers (2020-03-06T20:04:20Z) - Quantum Simulation of Quantum Field Theory in the Light-Front
Formulation [0.0]
Quantum chromodynamics (QCD) describes the structure of hadrons such as the proton at a fundamental level.
Uncertainty in the parton distribution function is the dominant source of error in the $W$ mass measurement at the LHC.
We show how this can be achieved by using the light-front formulation of quantum field theory.
arXiv Detail & Related papers (2020-02-10T18:43:07Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.