論文の概要: Perspectives and Opportunities: A Molecular Toolkit for Fundamental
Physics and Matter Wave Interferometry in Microgravity
- arxiv url: http://arxiv.org/abs/2207.00673v1
- Date: Fri, 1 Jul 2022 22:27:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-07 01:49:34.604711
- Title: Perspectives and Opportunities: A Molecular Toolkit for Fundamental
Physics and Matter Wave Interferometry in Microgravity
- Title(参考訳): 微小重力場における基本物理と物質波干渉測定のための分子ツールキット
- Authors: Jose P. D'Incao, Jason R. Williams, Naceur Gaaloul, Maxim A. Efremov,
Stefan Nimmrichter, Bjorn Schrinski, Ethan Elliott, Wolfgang Ketterle
- Abstract要約: 超低温気体を用いた分子物理学の研究は、自然の基本的な性質に関するユニークなプローブを提供している。
本稿では,1)超低温分子物理学研究における宇宙環境の利用が,1)高効率で分子物理学の超低エネルギー状態を探究すること,2)基本物理の能力のツールボックスを提供すること,3)新しい物質波干渉計のクラスを可能にすること,の機会を概説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The study of molecular physics using ultracold gases has provided a unique
probe into the fundamental properties of nature and offers new tools for
quantum technologies. In this article we outline how the use of a space
environment to study ultracold molecular physics opens opportunities for 1)
exploring ultra-low energy regimes of molecular physics with high efficiency,
2) providing a toolbox of capabilities for fundamental physics, and 3) enabling
new classes of matter-wave interferometers with applications in precision
measurement for fundamental and many-body physics.
- Abstract(参考訳): 超低温ガスを用いた分子物理学の研究は、自然の基本的な性質に関するユニークなプローブを提供し、量子技術のための新しいツールを提供している。
本稿では、超低温分子物理学を研究するための宇宙環境の利用が、いかに機会を開くかを概説する。
1)分子物理学の超低エネルギーレジームの高効率探索
2)基礎物理学の能力のツールボックスの提供、及び
3)物質波干渉計の新たなクラスの実現と基礎・多体物理の精密測定への応用
関連論文リスト
- Optomechanics of optically-levitated particles: A tutorial and perspective [0.0]
光は個々のイオンと原子の自由度に対する量子制御の冷却と実証に使われてきた。
放射圧によって物体が吊り下げられ、その環境から大きく切り離された光浮上は、近年、豊富な研究分野として確立されている。
この記事では、フィールドにおけるいくつかの現在の活動について、関連するキーコンセプトとメソッドを説明するチュートリアルとともに調査する。
論文 参考訳(メタデータ) (2023-07-21T18:58:25Z) - Symmetry-Informed Geometric Representation for Molecules, Proteins, and
Crystalline Materials [66.14337835284628]
幾何戦略の有効性をベンチマークできるGeom3Dというプラットフォームを提案する。
Geom3Dは16の高度な対称性インフォームド幾何表現モデルと46の多様なデータセット上の14の幾何事前学習方法を含んでいる。
論文 参考訳(メタデータ) (2023-06-15T05:37:25Z) - Quantum sensing for particle physics [0.0]
量子センシングは、基礎物理学を探索するための急速に成長するアプローチである。
新しいセンサー技術には原子干渉計、光学デバイス、そして絡み合いを含む原子と核時計が含まれる。
このパースペクティブは、将来の粒子物理学実験におけるこれらの技術の機会を探求する。
論文 参考訳(メタデータ) (2023-05-19T08:34:19Z) - Quantum control of molecules for fundamental physics [0.0]
レーザー冷却、トラップ、原子のコヒーレントな操作は、この特別な制御を分子にまで拡張する努力を加速させた。
量子状態の制御は、標準モデルを超えた基本定数や可能な物理学への例外のないアクセスを提供する。
論文 参考訳(メタデータ) (2022-04-26T15:12:01Z) - Quantum Sensors for High Precision Measurements of Spin-dependent
Interactions [47.187609203210705]
近年,量子情報科学のための実験手法や技術が急速に進歩している。
スピンベースの量子センサーは、無数の現象を探索するのに使うことができる。
スピンベースの量子センサーは、粒子衝突器や大規模粒子検出器を補完する基礎物理学のテストのための方法論を提供する。
論文 参考訳(メタデータ) (2022-03-17T17:36:48Z) - Snowmass 2021: Quantum Sensors for HEP Science -- Interferometers,
Mechanics, Traps, and Clocks [0.0]
我々は、原子干渉計によるセンシング、光学またはマイクロ波フィールドで読み取る機械装置、精密分光法に焦点を当てた。
これらの系が一意に寄与する可能性がある粒子物理学に関連する様々な検出対象を与える。
論文 参考訳(メタデータ) (2022-03-14T16:29:19Z) - Quantum Physics in Space [0.0]
注目すべきは、宇宙ベースの環境が、量子物理学とテクノロジーを探求し、活用するための多くの新しい道を開くかもしれないことである。
宇宙における量子技術に対処できる基本的な科学的問題と、様々な学術的・商業的な目的のためにこれらの技術の実装の可能性の両方を取り上げる。
論文 参考訳(メタデータ) (2021-08-03T12:29:22Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
デジタル量子コンピュータ(DQC)は、古典的コンピュータでは引き起こせない量子シミュレーションを効率的に行うことができる。
このレビューの目的は、物理量子優位性を達成するために行われた進歩の要約を提供することである。
論文 参考訳(メタデータ) (2021-01-21T20:10:38Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
数値的なアナログシミュレータの動作条件をベンチマークし、要求の少ない実験装置を見出す。
また、離散化と有限サイズ効果により生じるシミュレーションの誤差についてより深く理解する。
論文 参考訳(メタデータ) (2020-11-28T11:23:06Z) - The limit of spin lifetime in solid-state electronic spins [77.34726150561087]
最大2フォノンプロセスを含むスピン緩和の完全な第1原理図を提供する。
バナジウム系分子量子ビットを研究したところ、高温でのスピン寿命はラマン過程によって制限されることがわかった。
論文 参考訳(メタデータ) (2020-04-08T14:27:36Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
位相量子相は現代物理学の多くの概念の根底にある。
ここでは、トポロジカルエッジ状態、スペクトルランダウレベル、ホフスタッターバタフライを持つ量子ホール相が、単純な量子系に出現することを明らかにする。
このようなシステムでは、古典的なディックモデルによって記述されている光に結合した2レベル原子(量子ビット)の配列が、最近、低温原子と超伝導量子ビットによる実験で実現されている。
論文 参考訳(メタデータ) (2020-03-18T14:56:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。