Unsupervised Recurrent Federated Learning for Edge Popularity Prediction
in Privacy-Preserving Mobile Edge Computing Networks
- URL: http://arxiv.org/abs/2207.00755v2
- Date: Wed, 6 Jul 2022 02:47:21 GMT
- Title: Unsupervised Recurrent Federated Learning for Edge Popularity Prediction
in Privacy-Preserving Mobile Edge Computing Networks
- Authors: Chong Zheng, Shengheng Liu, Yongming Huang, Wei Zhang, Luxi Yang
- Abstract summary: We propose an unsupervised and privacy-preserving popularity prediction framework for MEC-enabled IIoT.
The proposed framework can enhance the prediction accuracy in terms of a reduced root-mean-squared error by up to $60.5%-68.7%$.
- Score: 31.871608633577047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nowadays wireless communication is rapidly reshaping entire industry sectors.
In particular, mobile edge computing (MEC) as an enabling technology for
industrial Internet of things (IIoT) brings powerful computing/storage
infrastructure closer to the mobile terminals and, thereby, significant lowers
the response latency. To reap the benefit of proactive caching at the network
edge, precise knowledge on the popularity pattern among the end devices is
essential. However, the complex and dynamic nature of the content popularity
over space and time as well as the data-privacy requirements in many IIoT
scenarios pose tough challenges to its acquisition. In this article, we propose
an unsupervised and privacy-preserving popularity prediction framework for
MEC-enabled IIoT. The concepts of local and global popularities are introduced
and the time-varying popularity of each user is modelled as a model-free Markov
chain. On this basis, a novel unsupervised recurrent federated learning (URFL)
algorithm is proposed to predict the distributed popularity while achieve
privacy preservation and unsupervised training. Simulations indicate that the
proposed framework can enhance the prediction accuracy in terms of a reduced
root-mean-squared error by up to $60.5\%-68.7\%$. Additionally, manual labeling
and violation of users' data privacy are both avoided.
Related papers
- PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
Federated learning (FL) has recently gained significant momentum due to its potential to leverage large-scale distributed user data.
The transmitted model updates can potentially leak sensitive user information, and the lack of central control of the local training process leaves the global model susceptible to malicious manipulations on model updates.
We develop a general framework PriRoAgg, utilizing Lagrange coded computing and distributed zero-knowledge proof, to execute a wide range of robust aggregation algorithms while satisfying aggregated privacy.
arXiv Detail & Related papers (2024-07-12T03:18:08Z) - Privacy-Preserving Distributed Learning for Residential Short-Term Load
Forecasting [11.185176107646956]
Power system load data can inadvertently reveal the daily routines of residential users, posing a risk to their property security.
We introduce a Markovian Switching-based distributed training framework, the convergence of which is substantiated through rigorous theoretical analysis.
Case studies employing real-world power system load data validate the efficacy of our proposed algorithm.
arXiv Detail & Related papers (2024-02-02T16:39:08Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - CLSA: Contrastive Learning-based Survival Analysis for Popularity
Prediction in MEC Networks [36.01752474571776]
Mobile Edge Caching (MEC) integrated with Deep Neural Networks (DNNs) is an innovative technology with significant potential for the future generation of wireless networks.
The MEC network's effectiveness heavily relies on its capacity to predict and dynamically update the storage of caching nodes with the most popular contents.
To be effective, a DNN-based popularity prediction model needs to have the ability to understand the historical request patterns of content.
arXiv Detail & Related papers (2023-03-21T15:57:46Z) - Over-the-Air Federated Learning with Privacy Protection via Correlated
Additive Perturbations [57.20885629270732]
We consider privacy aspects of wireless federated learning with Over-the-Air (OtA) transmission of gradient updates from multiple users/agents to an edge server.
Traditional perturbation-based methods provide privacy protection while sacrificing the training accuracy.
In this work, we aim at minimizing privacy leakage to the adversary and the degradation of model accuracy at the edge server.
arXiv Detail & Related papers (2022-10-05T13:13:35Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z) - DER Forecast using Privacy Preserving Federated Learning [0.0]
A distributed machine learning approach, Federated Learning, is proposed to carry out DER forecasting using a network of IoT nodes.
We consider a simulation study which includes 1000 DERs, and show that our method leads to an accurate prediction of preserve consumer privacy.
arXiv Detail & Related papers (2021-07-07T14:25:43Z) - Deep Anomaly Detection for Time-series Data in Industrial IoT: A
Communication-Efficient On-device Federated Learning Approach [40.992167455141946]
This paper proposes a new communication-efficient on-device federated learning (FL)-based deep anomaly detection framework for sensing time-series data in IIoT.
We first introduce a FL framework to enable decentralized edge devices to collaboratively train an anomaly detection model, which can improve its generalization ability.
Second, we propose an Attention Mechanism-based Convolutional Neural Network-Long Short Term Memory (AMCNN-LSTM) model to accurately detect anomalies.
Third, to adapt the proposed framework to the timeliness of industrial anomaly detection, we propose a gradient compression mechanism based on Top-textitk selection to
arXiv Detail & Related papers (2020-07-19T16:47:26Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z) - A Privacy-Preserving-Oriented DNN Pruning and Mobile Acceleration
Framework [56.57225686288006]
Weight pruning of deep neural networks (DNNs) has been proposed to satisfy the limited storage and computing capability of mobile edge devices.
Previous pruning methods mainly focus on reducing the model size and/or improving performance without considering the privacy of user data.
We propose a privacy-preserving-oriented pruning and mobile acceleration framework that does not require the private training dataset.
arXiv Detail & Related papers (2020-03-13T23:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.