How Routing Strategies Impact Urban Emissions
- URL: http://arxiv.org/abs/2207.01456v1
- Date: Mon, 4 Jul 2022 14:46:08 GMT
- Title: How Routing Strategies Impact Urban Emissions
- Authors: Giuliano Cornacchia, Matteo B\"ohm, Giovanni Mauro, Mirco Nanni, Dino
Pedreschi, Luca Pappalardo
- Abstract summary: Navigation apps use routing algorithms to suggest the best path to reach a user's desired destination.
Our work is a first step towards designing next-generation routing principles that may increase urban well-being while satisfying individual needs.
- Score: 2.436885905080739
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Navigation apps use routing algorithms to suggest the best path to reach a
user's desired destination. Although undoubtedly useful, navigation apps'
impact on the urban environment (e.g., carbon dioxide emissions and population
exposure to pollution) is still largely unclear. In this work, we design a
simulation framework to assess the impact of routing algorithms on carbon
dioxide emissions within an urban environment. Using APIs from TomTom and
OpenStreetMap, we find that settings in which either all vehicles or none of
them follow a navigation app's suggestion lead to the worst impact in terms of
CO2 emissions. In contrast, when just a portion (around half) of vehicles
follow these suggestions, and some degree of randomness is added to the
remaining vehicles' paths, we observe a reduction in the overall CO2 emissions
over the road network. Our work is a first step towards designing
next-generation routing principles that may increase urban well-being while
satisfying individual needs.
Related papers
- Mitigating Metropolitan Carbon Emissions with Dynamic Eco-driving at Scale [3.5052652317043846]
We consider an emerging opportunity to reduce carbon emissions: the growing adoption of semi-autonomous vehicles.
A comprehensive impact analysis has been out of reach due to the vast array of traffic scenarios and the complexity of vehicle emissions.
We perform an in-depth prospective impact assessment of dynamic eco-driving at 6,011 signalized intersections across three major US metropolitan cities.
arXiv Detail & Related papers (2024-08-10T18:23:59Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
Traffic signal control (TSC) is crucial for reducing traffic congestion that leads to smoother traffic flow, reduced idling time, and mitigated CO2 emissions.
In this study, we explore the computer vision approach for TSC that modulates on-road traffic flows through visual observation.
We introduce a holistic traffic simulation framework called TrafficDojo towards vision-based TSC and its benchmarking.
arXiv Detail & Related papers (2024-03-11T16:42:29Z) - Deep Reinforcement Learning-based Intelligent Traffic Signal Controls
with Optimized CO2 emissions [6.851243292023835]
Transportation networks face the challenge of sub-optimal control policies that can have adverse effects on human health, the environment, and contribute to traffic congestion.
Despite several adaptive traffic signal controllers in literature, limited research has been conducted on their comparative performance.
We propose EcoLight, a reward shaping scheme for reinforcement learning algorithms that not only reduces CO2 emissions but also achieves competitive results in metrics such as travel time.
arXiv Detail & Related papers (2023-10-19T19:54:47Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments.
We propose ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments.
ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets.
arXiv Detail & Related papers (2023-04-06T13:07:17Z) - A greedy approach for increased vehicle utilization in ridesharing
networks [0.3480973072524161]
ridesharing platforms have become a prominent mode of transportation for the residents of urban areas.
We propose a k-hop-based sliding window approximation algorithm that reduces the search space from entire road network to a window.
We evaluate our proposed model on real-world datasets and experimental results demonstrate superior performance by our proposed model.
arXiv Detail & Related papers (2023-04-02T07:25:01Z) - City-scale Pollution Aware Traffic Routing by Sampling Max Flows using
MCMC [8.301939401602233]
Long-term exposure to severe pollution can cause serious health issues.
We design a pollution-aware traffic routing policy using diverse samples and simulated traffic on real-world road maps.
We observe a considerable decrease in areas with severe pollution when experimented with maps of large cities across the world compared to other approaches.
arXiv Detail & Related papers (2023-02-28T09:40:37Z) - An ASP Framework for Efficient Urban Traffic Optimization [0.0]
This paper presents a framework which allows to efficiently simulate and optimize traffic flow in a large roads' network with hundreds of vehicles.
The framework leverages on an Answer Set Programming (ASP) encoding to formally describe the movements of vehicles inside a network.
It is then possible to optimize the routes of vehicles inside the network to reduce a range of relevant metrics.
arXiv Detail & Related papers (2022-08-05T10:50:38Z) - Pushing it out of the Way: Interactive Visual Navigation [62.296686176988125]
We study the problem of interactive navigation where agents learn to change the environment to navigate more efficiently to their goals.
We introduce the Neural Interaction Engine (NIE) to explicitly predict the change in the environment caused by the agent's actions.
By modeling the changes while planning, we find that agents exhibit significant improvements in their navigational capabilities.
arXiv Detail & Related papers (2021-04-28T22:46:41Z) - Emergent Road Rules In Multi-Agent Driving Environments [84.82583370858391]
We analyze what ingredients in driving environments cause the emergence of road rules.
We find that two crucial factors are noisy perception and agents' spatial density.
Our results add empirical support for the social road rules that countries worldwide have agreed on for safe, efficient driving.
arXiv Detail & Related papers (2020-11-21T09:43:50Z) - Congestion-aware Evacuation Routing using Augmented Reality Devices [96.68280427555808]
We present a congestion-aware routing solution for indoor evacuation, which produces real-time individual-customized evacuation routes among multiple destinations.
A population density map, obtained on-the-fly by aggregating locations of evacuees from user-end Augmented Reality (AR) devices, is used to model the congestion distribution inside a building.
arXiv Detail & Related papers (2020-04-25T22:54:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.