Mitigating Metropolitan Carbon Emissions with Dynamic Eco-driving at Scale
- URL: http://arxiv.org/abs/2408.05609v1
- Date: Sat, 10 Aug 2024 18:23:59 GMT
- Title: Mitigating Metropolitan Carbon Emissions with Dynamic Eco-driving at Scale
- Authors: Vindula Jayawardana, Baptiste Freydt, Ao Qu, Cameron Hickert, Edgar Sanchez, Catherine Tang, Mark Taylor, Blaine Leonard, Cathy Wu,
- Abstract summary: We consider an emerging opportunity to reduce carbon emissions: the growing adoption of semi-autonomous vehicles.
A comprehensive impact analysis has been out of reach due to the vast array of traffic scenarios and the complexity of vehicle emissions.
We perform an in-depth prospective impact assessment of dynamic eco-driving at 6,011 signalized intersections across three major US metropolitan cities.
- Score: 3.5052652317043846
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The sheer scale and diversity of transportation make it a formidable sector to decarbonize. Here, we consider an emerging opportunity to reduce carbon emissions: the growing adoption of semi-autonomous vehicles, which can be programmed to mitigate stop-and-go traffic through intelligent speed commands and, thus, reduce emissions. But would such dynamic eco-driving move the needle on climate change? A comprehensive impact analysis has been out of reach due to the vast array of traffic scenarios and the complexity of vehicle emissions. We address this challenge with large-scale scenario modeling efforts and by using multi-task deep reinforcement learning with a carefully designed network decomposition strategy. We perform an in-depth prospective impact assessment of dynamic eco-driving at 6,011 signalized intersections across three major US metropolitan cities, simulating a million traffic scenarios. Overall, we find that vehicle trajectories optimized for emissions can cut city-wide intersection carbon emissions by 11-22%, without harming throughput or safety, and with reasonable assumptions, equivalent to the national emissions of Israel and Nigeria, respectively. We find that 10% eco-driving adoption yields 25%-50% of the total reduction, and nearly 70% of the benefits come from 20% of intersections, suggesting near-term implementation pathways. However, the composition of this high-impact subset of intersections varies considerably across different adoption levels, with minimal overlap, calling for careful strategic planning for eco-driving deployments. Moreover, the impact of eco-driving, when considered jointly with projections of vehicle electrification and hybrid vehicle adoption remains significant. More broadly, this work paves the way for large-scale analysis of traffic externalities, such as time, safety, and air quality, and the potential impact of solution strategies.
Related papers
- The RoboDrive Challenge: Drive Anytime Anywhere in Any Condition [136.32656319458158]
The 2024 RoboDrive Challenge was crafted to propel the development of driving perception technologies.
This year's challenge consisted of five distinct tracks and attracted 140 registered teams from 93 institutes across 11 countries.
The competition culminated in 15 top-performing solutions.
arXiv Detail & Related papers (2024-05-14T17:59:57Z) - Analyzing Emissions and Energy Efficiency at Unsignalized Real-world
Intersections Under Mixed Traffic Control [27.838827756692243]
U.S. transportation generates 28% of U.S. emissions.
Recent research has developed mixed traffic control eco-driving strategies at signalized intersections to decrease emissions.
We provide an emissions analysis on unsignalized intersections with complex, real-world topologies and traffic demands.
arXiv Detail & Related papers (2023-11-20T16:02:33Z) - Deep Reinforcement Learning-based Intelligent Traffic Signal Controls
with Optimized CO2 emissions [6.851243292023835]
Transportation networks face the challenge of sub-optimal control policies that can have adverse effects on human health, the environment, and contribute to traffic congestion.
Despite several adaptive traffic signal controllers in literature, limited research has been conducted on their comparative performance.
We propose EcoLight, a reward shaping scheme for reinforcement learning algorithms that not only reduces CO2 emissions but also achieves competitive results in metrics such as travel time.
arXiv Detail & Related papers (2023-10-19T19:54:47Z) - Exploring sustainable pathways for urban traffic decarbonization in downtown Toronto [4.378407481656902]
This study explores decarbonization strategies for urban traffic in downtown Toronto through microsimulation.
Using transformer-based prediction models, we forecast Greenhouse Gas (GHG) and Nitrogen Oxides (NOx) emissions.
The key findings show that 100% Battery Electric Vehicles (BEVs) reduce GHG emissions by 75%, but face challenges related to cost and infrastructure.
arXiv Detail & Related papers (2023-08-28T22:17:36Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
Traffic Signal Control (TSC) aims to reduce the average travel time of vehicles in a road network.
Most prior TSC methods leverage deep reinforcement learning to search for a control policy.
We propose DenseLight, a novel RL-based TSC method that employs an unbiased reward function to provide dense feedback on policy effectiveness.
arXiv Detail & Related papers (2023-06-13T05:58:57Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Learning Eco-Driving Strategies at Signalized Intersections [1.7682859739940435]
We propose a reinforcement learning approach to learn effective eco-driving control strategies.
We analyze the potential impact of a learned strategy on fuel consumption, CO2 emission, and travel time.
Results indicate that even 25% CAV penetration can bring at least 50% of the total fuel and emission reduction benefits.
arXiv Detail & Related papers (2022-04-26T19:45:11Z) - Modelling the transition to a low-carbon energy supply [91.3755431537592]
A transition to a low-carbon electricity supply is crucial to limit the impacts of climate change.
Reducing carbon emissions could help prevent the world from reaching a tipping point, where runaway emissions are likely.
Runaway emissions could lead to extremes in weather conditions around the world.
arXiv Detail & Related papers (2021-09-25T12:37:05Z) - Simulating the Effects of Eco-Friendly Transportation Selections for Air
Pollution Reduction [1.9968351444772683]
We propose a method to simulate the effectiveness of an eco-friendly transport mode selection for reducing air pollution by using map search logs.
The total amount of CO2 emissions can be reduced by 9.23%, whereas the average travel time can in fact be reduced by 9.96%.
arXiv Detail & Related papers (2021-09-10T12:30:32Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - Deep Structured Reactive Planning [94.92994828905984]
We propose a novel data-driven, reactive planning objective for self-driving vehicles.
We show that our model outperforms a non-reactive variant in successfully completing highly complex maneuvers.
arXiv Detail & Related papers (2021-01-18T01:43:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.