Integration of Remote Patient Monitoring Systems into Physicians Work in
Underserved Communities: Survey of Healthcare Provider Perspectives
- URL: http://arxiv.org/abs/2207.01489v1
- Date: Tue, 14 Jun 2022 09:00:08 GMT
- Title: Integration of Remote Patient Monitoring Systems into Physicians Work in
Underserved Communities: Survey of Healthcare Provider Perspectives
- Authors: Samuel Bonet Olivencia, Karim Zahed, Farzan Sasangohar, Rotem Davir,
Arnold Vedlitz
- Abstract summary: Remote patient monitoring technologies have been identified as a viable alternative to improve access to care in underserved communities.
This study elicits perspectives from stakeholders about barriers and facilitators in the adoption and integration of RPM into clinical in underserved areas.
Further research is needed to identify methods to address such concerns and use information collected in this study to develop protocols for RPM integration into clinical workflow.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Remote patient monitoring (RPM) technologies have been identified as a viable
alternative to improve access to care in underserved communities. Successful
RPM platforms are designed and implemented for seamless integration into
healthcare providers work to increase adoption and availability for offering
remote care. A quantitative survey was designed and administered to elicit
perspectives from a wide range of stakeholders, including healthcare providers
and healthcare administrators, about barriers and facilitators in the adoption
and integration of RPM into clinical workflows in underserved areas. Ease of
adoption, workflow disruption, changes in the patient-physician relationship,
and costs and financial benefits are identified as relevant factors that
influence the widespread use of RPM by healthcare providers; significant
communication and other implementation preferences also emerged. Further
research is needed to identify methods to address such concerns and use
information collected in this study to develop protocols for RPM integration
into clinical workflow.
Related papers
- IMAS: A Comprehensive Agentic Approach to Rural Healthcare Delivery [0.0]
This paper proposes an advanced agentic medical assistant system designed to improve healthcare delivery in rural areas.
The system is composed of five crucial components: translation, medical complexity assessment, expert network integration, and response simplification.
Evaluation results using the MedQA, PubMedQA, and JAMA datasets demonstrate that this integrated approach significantly enhances the effectiveness of rural healthcare workers.
arXiv Detail & Related papers (2024-10-13T23:07:11Z) - Beyond One-Time Validation: A Framework for Adaptive Validation of Prognostic and Diagnostic AI-based Medical Devices [55.319842359034546]
Existing approaches often fall short in addressing the complexity of practically deploying these devices.
The presented framework emphasizes the importance of repeating validation and fine-tuning during deployment.
It is positioned within the current US and EU regulatory landscapes.
arXiv Detail & Related papers (2024-09-07T11:13:52Z) - Harnessing the Digital Revolution: A Comprehensive Review of mHealth Applications for Remote Monitoring in Transforming Healthcare Delivery [1.03590082373586]
The review highlights various types of mHealth applications used for remote monitoring, such as telemedicine platforms, mobile apps for chronic disease management, and wearable devices.
The benefits of these applications include improved patient outcomes, increased access to healthcare, reduced healthcare costs, and addressing healthcare disparities.
However, challenges and limitations, such as privacy and security concerns, lack of technical infrastructure, regulatory is-sues, data accuracy, user adherence, and the digital divide, need to be addressed.
arXiv Detail & Related papers (2024-08-26T11:32:43Z) - FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection [83.54960238236548]
FEDMEKI not only preserves data privacy but also enhances the capability of medical foundation models.
FEDMEKI allows medical foundation models to learn from a broader spectrum of medical knowledge without direct data exposure.
arXiv Detail & Related papers (2024-08-17T15:18:56Z) - Optimizing HIV Patient Engagement with Reinforcement Learning in Resource-Limited Settings [2.619524972111665]
The CHARM app is an AI-native mobile app for community health workers (CHWs)
This paper details CHARM's development, integration, and upcoming reinforcement learning-based adaptive interventions.
arXiv Detail & Related papers (2024-08-14T15:55:31Z) - SaludConectaMX: Lessons Learned from Deploying a Cooperative Mobile Health System for Pediatric Cancer Care in Mexico [33.91720564325487]
SaludConectaMX is a comprehensive system to track and understand the determinants of complications throughout chemotherapy treatment for children with cancer in Mexico.
The system is composed of a web application (for hospital staff) and a mobile application (for family caregivers)
This paper presents the system's preliminary design and usability evaluation results from a 1.5-year pilot study.
arXiv Detail & Related papers (2024-08-01T19:13:49Z) - Retrieval Augmented Thought Process for Private Data Handling in Healthcare [53.89406286212502]
We introduce the Retrieval-Augmented Thought Process (RATP)
RATP formulates the thought generation of Large Language Models (LLMs)
On a private dataset of electronic medical records, RATP achieves 35% additional accuracy compared to in-context retrieval-augmented generation for the question-answering task.
arXiv Detail & Related papers (2024-02-12T17:17:50Z) - Deep Reinforcement Learning for Efficient and Fair Allocation of Health Care Resources [47.57108369791273]
Scarcity of health care resources could result in the unavoidable consequence of rationing.
There is no universally accepted standard for health care resource allocation protocols.
We propose a transformer-based deep Q-network to integrate the disease progression of individual patients and the interaction effects among patients.
arXiv Detail & Related papers (2023-09-15T17:28:06Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - SPeC: A Soft Prompt-Based Calibration on Performance Variability of
Large Language Model in Clinical Notes Summarization [50.01382938451978]
We introduce a model-agnostic pipeline that employs soft prompts to diminish variance while preserving the advantages of prompt-based summarization.
Experimental findings indicate that our method not only bolsters performance but also effectively curbs variance for various language models.
arXiv Detail & Related papers (2023-03-23T04:47:46Z) - Nine Recommendations for Decision Aid Implementation from the Clinician
Perspective [0.0]
Time pressure and patient characteristics were cited as major barriers by 55% of the clinicians we interviewed.
Structural factors such as external quotas for certain treatment procedures were also considered as barriers by 44% of the clinicians.
Our findings suggest a role for external stakeholders such as healthcare insurers in creating economic incentives to facilitate implementation.
arXiv Detail & Related papers (2020-07-21T13:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.