Quantum Neural Network Compression
- URL: http://arxiv.org/abs/2207.01578v2
- Date: Tue, 5 Jul 2022 15:19:43 GMT
- Title: Quantum Neural Network Compression
- Authors: Zhirui Hu, Peiyan Dong, Zhepeng Wang, Youzuo Lin, Yanzhi Wang, Weiwen
Jiang
- Abstract summary: We show that there exist differences between the compression of quantum and classical neural networks.
We propose the very first systematical framework, namely CompVQC, to compress quantum neural networks.
- Score: 23.206283554472787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model compression, such as pruning and quantization, has been widely applied
to optimize neural networks on resource-limited classical devices. Recently,
there are growing interest in variational quantum circuits (VQC), that is, a
type of neural network on quantum computers (a.k.a., quantum neural networks).
It is well known that the near-term quantum devices have high noise and limited
resources (i.e., quantum bits, qubits); yet, how to compress quantum neural
networks has not been thoroughly studied. One might think it is straightforward
to apply the classical compression techniques to quantum scenarios. However,
this paper reveals that there exist differences between the compression of
quantum and classical neural networks. Based on our observations, we claim that
the compilation/traspilation has to be involved in the compression process. On
top of this, we propose the very first systematical framework, namely CompVQC,
to compress quantum neural networks (QNNs).In CompVQC, the key component is a
novel compression algorithm, which is based on the alternating direction method
of multipliers (ADMM) approach. Experiments demonstrate the advantage of the
CompVQC, reducing the circuit depth (almost over 2.5 %) with a negligible
accuracy drop (<1%), which outperforms other competitors. Another promising
truth is our CompVQC can indeed promote the robustness of the QNN on the
near-term noisy quantum devices.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Variational Quantum Neural Networks (VQNNS) in Image Classification [0.0]
This paper investigates how training of quantum neural network (QNNs) can be done using quantum optimization algorithms.
In this paper, a QNN structure is made where a variational parameterized circuit is incorporated as an input layer named as Variational Quantum Neural Network (VQNNs)
VQNNs is experimented with MNIST digit recognition (less complex) and crack image classification datasets which converge the computation in lesser time than QNN with decent training accuracy.
arXiv Detail & Related papers (2023-03-10T11:24:32Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Evaluating the performance of sigmoid quantum perceptrons in quantum
neural networks [0.0]
Quantum neural networks (QNN) have been proposed as a promising architecture for quantum machine learning.
One candidate is quantum perceptrons designed to emulate the nonlinear activation functions of classical perceptrons.
We critically investigate both the capabilities and performance of SQP networks by computing their effective dimension and effective capacity.
arXiv Detail & Related papers (2022-08-12T10:08:11Z) - QFCNN: Quantum Fourier Convolutional Neural Network [4.344289435743451]
We propose a new hybrid quantum-classical circuit, namely Quantum Fourier Convolutional Network (QFCN)
Our model achieves exponential speed-up compared with classical CNN theoretically and improves over the existing best result of quantum CNN.
We demonstrate the potential of this architecture by applying it to different deep learning tasks, including traffic prediction and image classification.
arXiv Detail & Related papers (2021-06-19T04:37:39Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Realising and compressing quantum circuits with quantum reservoir
computing [2.834895018689047]
We show how a random network of quantum nodes can be used as a robust hardware for quantum computing.
Our network architecture induces quantum operations by optimising only a single layer of quantum nodes.
In the few-qubit regime, sequences of multiple quantum gates in quantum circuits can be compressed with a single operation.
arXiv Detail & Related papers (2020-03-21T03:29:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.