Variational Quantum Neural Networks (VQNNS) in Image Classification
- URL: http://arxiv.org/abs/2303.05860v1
- Date: Fri, 10 Mar 2023 11:24:32 GMT
- Title: Variational Quantum Neural Networks (VQNNS) in Image Classification
- Authors: Meghashrita Das and Tirupati Bolisetti
- Abstract summary: This paper investigates how training of quantum neural network (QNNs) can be done using quantum optimization algorithms.
In this paper, a QNN structure is made where a variational parameterized circuit is incorporated as an input layer named as Variational Quantum Neural Network (VQNNs)
VQNNs is experimented with MNIST digit recognition (less complex) and crack image classification datasets which converge the computation in lesser time than QNN with decent training accuracy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning has established as an interdisciplinary field to
overcome limitations of classical machine learning and neural networks. This is
a field of research which can prove that quantum computers are able to solve
problems with complex correlations between inputs that can be hard for
classical computers. This suggests that learning models made on quantum
computers may be more powerful for applications, potentially faster computation
and better generalization on less data. The objective of this paper is to
investigate how training of quantum neural network (QNNs) can be done using
quantum optimization algorithms for improving the performance and time
complexity of QNNs. A classical neural network can be partially quantized to
create a hybrid quantum-classical neural network which is used mainly in
classification and image recognition. In this paper, a QNN structure is made
where a variational parameterized circuit is incorporated as an input layer
named as Variational Quantum Neural Network (VQNNs). We encode the cost
function of QNNs onto relative phases of a superposition state in the Hilbert
space of the network parameters. The parameters are tuned with an iterative
quantum approximate optimisation (QAOA) mixer and problem hamiltonians. VQNNs
is experimented with MNIST digit recognition (less complex) and crack image
classification datasets (more complex) which converges the computation in
lesser time than QNN with decent training accuracy.
Related papers
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Evaluating the performance of sigmoid quantum perceptrons in quantum
neural networks [0.0]
Quantum neural networks (QNN) have been proposed as a promising architecture for quantum machine learning.
One candidate is quantum perceptrons designed to emulate the nonlinear activation functions of classical perceptrons.
We critically investigate both the capabilities and performance of SQP networks by computing their effective dimension and effective capacity.
arXiv Detail & Related papers (2022-08-12T10:08:11Z) - Quantum-inspired Complex Convolutional Neural Networks [17.65730040410185]
We improve the quantum-inspired neurons by exploiting the complex-valued weights which have richer representational capacity and better non-linearity.
We draw the models of quantum-inspired convolutional neural networks (QICNNs) capable of processing high-dimensional data.
The performance of classification accuracy of the five QICNNs are tested on the MNIST and CIFAR-10 datasets.
arXiv Detail & Related papers (2021-10-31T03:10:48Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
We show that conditions amenable to classical trainability via gradient descent coincide with those necessary for efficiently solving quantum linear systems.
We numerically demonstrate that the MNIST image dataset satisfies such conditions.
We provide empirical evidence for $O(log n)$ training of a convolutional neural network with pooling.
arXiv Detail & Related papers (2021-07-19T23:41:03Z) - A Quantum Convolutional Neural Network for Image Classification [7.745213180689952]
We propose a novel neural network model named Quantum Convolutional Neural Network (QCNN)
QCNN is based on implementable quantum circuits and has a similar structure as classical convolutional neural networks.
Numerical simulation results on the MNIST dataset demonstrate the effectiveness of our model.
arXiv Detail & Related papers (2021-07-08T06:47:34Z) - QFCNN: Quantum Fourier Convolutional Neural Network [4.344289435743451]
We propose a new hybrid quantum-classical circuit, namely Quantum Fourier Convolutional Network (QFCN)
Our model achieves exponential speed-up compared with classical CNN theoretically and improves over the existing best result of quantum CNN.
We demonstrate the potential of this architecture by applying it to different deep learning tasks, including traffic prediction and image classification.
arXiv Detail & Related papers (2021-06-19T04:37:39Z) - Branching Quantum Convolutional Neural Networks [0.0]
Small-scale quantum computers are already showing potential gains in learning tasks on large quantum and very large classical data sets.
We present a generalization of QCNN, the branching quantum convolutional neural network, or bQCNN, with substantially higher expressibility.
arXiv Detail & Related papers (2020-12-28T19:00:03Z) - Toward Trainability of Quantum Neural Networks [87.04438831673063]
Quantum Neural Networks (QNNs) have been proposed as generalizations of classical neural networks to achieve the quantum speed-up.
Serious bottlenecks exist for training QNNs due to the vanishing with gradient rate exponential to the input qubit number.
We show that QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.
arXiv Detail & Related papers (2020-11-12T08:32:04Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.